*: shared first/last authors
Abstract:International challenges have become the standard for validation of biomedical image analysis methods. Given their scientific impact, it is surprising that a critical analysis of common practices related to the organization of challenges has not yet been performed. In this paper, we present a comprehensive analysis of biomedical image analysis challenges conducted up to now. We demonstrate the importance of challenges and show that the lack of quality control has critical consequences. First, reproducibility and interpretation of the results is often hampered as only a fraction of relevant information is typically provided. Second, the rank of an algorithm is generally not robust to a number of variables such as the test data used for validation, the ranking scheme applied and the observers that make the reference annotations. To overcome these problems, we recommend best practice guidelines and define open research questions to be addressed in the future.
Abstract:With the rapidly increasing interest in machine learning based solutions for automatic image annotation, the availability of reference annotations for algorithm training is one of the major bottlenecks in the field. Crowdsourcing has evolved as a valuable option for low-cost and large-scale data annotation; however, quality control remains a major issue which needs to be addressed. To our knowledge, we are the first to analyze the annotation process to improve crowd-sourced image segmentation. Our method involves training a regressor to estimate the quality of a segmentation from the annotator's clickstream data. The quality estimation can be used to identify spam and weight individual annotations by their (estimated) quality when merging multiple segmentations of one image. Using a total of 29,000 crowd annotations performed on publicly available data of different object classes, we show that (1) our method is highly accurate in estimating the segmentation quality based on clickstream data, (2) outperforms state-of-the-art methods for merging multiple annotations. As the regressor does not need to be trained on the object class that it is applied to it can be regarded as a low-cost option for quality control and confidence analysis in the context of crowd-based image annotation.