Abstract:Knowledge graphs (KGs), containing many entity-relation-entity triples, provide rich information for downstream applications. Although extracting triples from unstructured texts has been widely explored, most of them require a large number of labeled instances. The performance will drop dramatically when only few labeled data are available. To tackle this problem, we propose the Mutually Guided Few-shot learning framework for Relational Triple Extraction (MG-FTE). Specifically, our method consists of an entity-guided relation proto-decoder to classify the relations firstly and a relation-guided entity proto-decoder to extract entities based on the classified relations. To draw the connection between entity and relation, we design a proto-level fusion module to boost the performance of both entity extraction and relation classification. Moreover, a new cross-domain few-shot triple extraction task is introduced. Extensive experiments show that our method outperforms many state-of-the-art methods by 12.6 F1 score on FewRel 1.0 (single-domain) and 20.5 F1 score on FewRel 2.0 (cross-domain).
Abstract:Most existing unsupervised domain adaptation methods mainly focused on aligning the marginal distributions of samples between the source and target domains. This setting does not sufficiently consider the class distribution information between the two domains, which could adversely affect the reduction of domain gap. To address this issue, we propose a novel approach called Conditional ADversarial Image Translation (CADIT) to explicitly align the class distributions given samples between the two domains. It integrates a discriminative structure-preserving loss and a joint adversarial generation loss. The former effectively prevents undesired label-flipping during the whole process of image translation, while the latter maintains the joint distribution alignment of images and labels. Furthermore, our approach enforces the classification consistence of target domain images before and after adaptation to aid the classifier training in both domains. Extensive experiments were conducted on multiple benchmark datasets including Digits, Faces, Scenes and Office31, showing that our approach achieved superior classification in the target domain when compared to the state-of-the-art methods. Also, both qualitative and quantitative results well supported our motivation that aligning the class distributions can indeed improve domain adaptation.