Abstract:In this paper, we compare two paradigms for unsupervised discovery of structured acoustic tokens directly from speech corpora without any human annotation. The Multigranular Paradigm seeks to capture all available information in the corpora with multiple sets of tokens for different model granularities. The Hierarchical Paradigm attempts to jointly learn several levels of signal representations in a hierarchical structure. The two paradigms are unified within a theoretical framework in this paper. Query-by-Example Spoken Term Detection (QbE-STD) experiments on the QUESST dataset of MediaEval 2015 verifies the competitiveness of the acoustic tokens. The Enhanced Relevance Score (ERS) proposed in this work improves both paradigms for the task of QbE-STD. We also list results on the ABX evaluation task of the Zero Resource Challenge 2015 for comparison of the Paradigms.
Abstract:In this paper we analyze the gate activation signals inside the gated recurrent neural networks, and find the temporal structure of such signals is highly correlated with the phoneme boundaries. This correlation is further verified by a set of experiments for phoneme segmentation, in which better results compared to standard approaches were obtained.
Abstract:In this paper we aim to automatically discover high quality frame-level speech features and acoustic tokens directly from unlabeled speech data. A Multi-granular Acoustic Tokenizer (MAT) was proposed for automatic discovery of multiple sets of acoustic tokens from the given corpus. Each acoustic token set is specified by a set of hyperparameters describing the model configuration. These different sets of acoustic tokens carry different characteristics for the given corpus and the language behind, thus can be mutually reinforced. The multiple sets of token labels are then used as the targets of a Multi-target Deep Neural Network (MDNN) trained on frame-level acoustic features. Bottleneck features extracted from the MDNN are then used as the feedback input to the MAT and the MDNN itself in the next iteration. The multi-granular acoustic token sets and the frame-level speech features can be iteratively optimized in the iterative deep learning framework. We call this framework the Multi-granular Acoustic Tokenizing Deep Neural Network (MATDNN). The results were evaluated using the metrics and corpora defined in the Zero Resource Speech Challenge organized at Interspeech 2015, and improved performance was obtained with a set of experiments of query-by-example spoken term detection on the same corpora. Visualization for the discovered tokens against the English phonemes was also shown.
Abstract:In this work we aim to discover high quality speech features and linguistic units directly from unlabeled speech data in a zero resource scenario. The results are evaluated using the metrics and corpora proposed in the Zero Resource Speech Challenge organized at Interspeech 2015. A Multi-layered Acoustic Tokenizer (MAT) was proposed for automatic discovery of multiple sets of acoustic tokens from the given corpus. Each acoustic token set is specified by a set of hyperparameters that describe the model configuration. These sets of acoustic tokens carry different characteristics fof the given corpus and the language behind, thus can be mutually reinforced. The multiple sets of token labels are then used as the targets of a Multi-target Deep Neural Network (MDNN) trained on low-level acoustic features. Bottleneck features extracted from the MDNN are then used as the feedback input to the MAT and the MDNN itself in the next iteration. We call this iterative deep learning framework the Multi-layered Acoustic Tokenizing Deep Neural Network (MAT-DNN), which generates both high quality speech features for the Track 1 of the Challenge and acoustic tokens for the Track 2 of the Challenge. In addition, we performed extra experiments on the same corpora on the application of query-by-example spoken term detection. The experimental results showed the iterative deep learning framework of MAT-DNN improved the detection performance due to better underlying speech features and acoustic tokens.
Abstract:This paper presents a novel approach for enhancing the multiple sets of acoustic patterns automatically discovered from a given corpus. In a previous work it was proposed that different HMM configurations (number of states per model, number of distinct models) for the acoustic patterns form a two-dimensional space. Multiple sets of acoustic patterns automatically discovered with the HMM configurations properly located on different points over this two-dimensional space were shown to be complementary to one another, jointly capturing the characteristics of the given corpus. By representing the given corpus as sequences of acoustic patterns on different HMM sets, the pattern indices in these sequences can be relabeled considering the context consistency across the different sequences. Good improvements were observed in preliminary experiments of pattern spoken term detection (STD) performed on both TIMIT and Mandarin Broadcast News with such enhanced patterns.
Abstract:This paper presents a new approach for unsupervised Spoken Term Detection with spoken queries using multiple sets of acoustic patterns automatically discovered from the target corpus. The different pattern HMM configurations(number of states per model, number of distinct models, number of Gaussians per state)form a three-dimensional model granularity space. Different sets of acoustic patterns automatically discovered on different points properly distributed over this three-dimensional space are complementary to one another, thus can jointly capture the characteristics of the spoken terms. By representing the spoken content and spoken query as sequences of acoustic patterns, a series of approaches for matching the pattern index sequences while considering the signal variations are developed. In this way, not only the on-line computation load can be reduced, but the signal distributions caused by different speakers and acoustic conditions can be reasonably taken care of. The results indicate that this approach significantly outperformed the unsupervised feature-based DTW baseline by 16.16\% in mean average precision on the TIMIT corpus.
Abstract:Techniques for unsupervised discovery of acoustic patterns are getting increasingly attractive, because huge quantities of speech data are becoming available but manual annotations remain hard to acquire. In this paper, we propose an approach for unsupervised discovery of linguistic structure for the target spoken language given raw speech data. This linguistic structure includes two-level (subword-like and word-like) acoustic patterns, the lexicon of word-like patterns in terms of subword-like patterns and the N-gram language model based on word-like patterns. All patterns, models, and parameters can be automatically learned from the unlabelled speech corpus. This is achieved by an initialization step followed by three cascaded stages for acoustic, linguistic, and lexical iterative optimization. The lexicon of word-like patterns defines allowed consecutive sequence of HMMs for subword-like patterns. In each iteration, model training and decoding produces updated labels from which the lexicon and HMMs can be further updated. In this way, model parameters and decoded labels are respectively optimized in each iteration, and the knowledge about the linguistic structure is learned gradually layer after layer. The proposed approach was tested in preliminary experiments on a corpus of Mandarin broadcast news, including a task of spoken term detection with performance compared to a parallel test using models trained in a supervised way. Results show that the proposed system not only yields reasonable performance on its own, but is also complimentary to existing large vocabulary ASR systems.
Abstract:This paper summarizes the work done by the authors for the Zero Resource Speech Challenge organized in the technical program of Interspeech 2015. The goal of the challenge is to discover linguistic units directly from unlabeled speech data. The Multi-layered Acoustic Tokenizer (MAT) proposed in this work automatically discovers multiple sets of acoustic tokens from the given corpus. Each acoustic token set is specified by a set of hyperparameters that describe the model configuration. These sets of acoustic tokens carry different characteristics of the given corpus and the language behind thus can be mutually reinforced. The multiple sets of token labels are then used as the targets of a Multi-target DNN (MDNN) trained on low-level acoustic features. Bottleneck features extracted from the MDNN are used as feedback for the MAT and the MDNN itself. We call this iterative system the Multi-layered Acoustic Tokenizing Deep Neural Network (MAT-DNN) which generates high quality features for track 1 of the challenge and acoustic tokens for track 2 of the challenge.