Abstract:As a common approach to learning English, reading comprehension primarily entails reading articles and answering related questions. However, the complexity of designing effective exercises results in students encountering standardized questions, making it challenging to align with individualized learners' reading comprehension ability. By leveraging the advanced capabilities offered by large language models, exemplified by ChatGPT, this paper presents a novel personalized support system for reading comprehension, referred to as ChatPRCS, based on the Zone of Proximal Development theory. ChatPRCS employs methods including reading comprehension proficiency prediction, question generation, and automatic evaluation, among others, to enhance reading comprehension instruction. First, we develop a new algorithm that can predict learners' reading comprehension abilities using their historical data as the foundation for generating questions at an appropriate level of difficulty. Second, a series of new ChatGPT prompt patterns is proposed to address two key aspects of reading comprehension objectives: question generation, and automated evaluation. These patterns further improve the quality of generated questions. Finally, by integrating personalized ability and reading comprehension prompt patterns, ChatPRCS is systematically validated through experiments. Empirical results demonstrate that it provides learners with high-quality reading comprehension questions that are broadly aligned with expert-crafted questions at a statistical level.
Abstract:Reference-based super-resolution (RefSR) has gained considerable success in the field of super-resolution with the addition of high-resolution reference images to reconstruct low-resolution (LR) inputs with more high-frequency details, thereby overcoming some limitations of single image super-resolution (SISR). Previous research in the field of RefSR has mostly focused on two crucial aspects. The first is accurate correspondence matching between the LR and the reference (Ref) image. The second is the effective transfer and aggregation of similar texture information from the Ref images. Nonetheless, an important detail of perceptual loss and adversarial loss has been underestimated, which has a certain adverse effect on texture transfer and reconstruction. In this study, we propose a feature reuse framework that guides the step-by-step texture reconstruction process through different stages, reducing the negative impacts of perceptual and adversarial loss. The feature reuse framework can be used for any RefSR model, and several RefSR approaches have improved their performance after being retrained using our framework. Additionally, we introduce a single image feature embedding module and a texture-adaptive aggregation module. The single image feature embedding module assists in reconstructing the features of the LR inputs itself and effectively lowers the possibility of including irrelevant textures. The texture-adaptive aggregation module dynamically perceives and aggregates texture information between the LR inputs and the Ref images using dynamic filters. This enhances the utilization of the reference texture while reducing reference misuse. The source code is available at https://github.com/Yi-Yang355/FRFSR.
Abstract:A random net is a shallow neural network where the hidden layer is frozen with random assignment and the output layer is trained by convex optimization. Using random weights for a hidden layer is an effective method to avoid the inevitable non-convexity in standard gradient descent learning. It has recently been adopted in the study of deep learning theory. Here, we investigate the expressive power of random nets. We show that, despite the well-known fact that a shallow neural network is a universal approximator, a random net cannot achieve zero approximation error even for smooth functions. In particular, we prove that for a class of smooth functions, if the proposal distribution is compactly supported, then a lower bound is positive. Based on the ridgelet analysis and harmonic analysis for neural networks, the proof uses the Plancherel theorem and an estimate for the truncated tail of the parameter distribution. We corroborate our theoretical results with various simulation studies, and generally two main take-home messages are offered: (i) Not any distribution for selecting random weights is feasible to build a universal approximator; (ii) A suitable assignment of random weights exists but to some degree is associated with the complexity of the target function.