Abstract:In this work, we tackle the problems of efficiency and scalability for predictive coding networks in machine learning. To do so, we first propose a library called PCX, whose focus lies on performance and simplicity, and provides a user-friendly, deep-learning oriented interface. Second, we use PCX to implement a large set of benchmarks for the community to use for their experiments. As most works propose their own tasks and architectures, do not compare one against each other, and focus on small-scale tasks, a simple and fast open-source library adopted by the whole community would address all of these concerns. Third, we perform extensive benchmarks using multiple algorithms, setting new state-of-the-art results in multiple tasks and datasets, as well as highlighting limitations inherent to PC that should be addressed. Thanks to the efficiency of PCX, we are able to analyze larger architectures than commonly used, providing baselines to galvanize community efforts towards one of the main open problems in the field: scalability. The code for PCX is available at \textit{https://github.com/liukidar/pcax}.
Abstract:To reduce doctors' workload, deep-learning-based automatic medical report generation has recently attracted more and more research efforts, where attention mechanisms and reinforcement learning are integrated with the classic encoder-decoder architecture to enhance the performance of deep models. However, these state-of-the-art solutions mainly suffer from two shortcomings: (i) their attention mechanisms cannot utilize high-order feature interactions, and (ii) due to the use of TF-IDF-based reward functions, these methods are fragile with generating repeated terms. Therefore, in this work, we propose a reinforced medical report generation solution with x-linear attention and repetition penalty mechanisms (ReMRG-XR) to overcome these problems. Specifically, x-linear attention modules are used to explore high-order feature interactions and achieve multi-modal reasoning, while repetition penalty is used to apply penalties to repeated terms during the model's training process. Extensive experimental studies have been conducted on two public datasets, and the results show that ReMRG-XR greatly outperforms the state-of-the-art baselines in terms of all metrics.
Abstract:Recently deep learning methods, in particular, convolutional neural networks (CNNs), have led to a massive breakthrough in the range of computer vision. Also, the large-scale annotated dataset is the essential key to a successful training procedure. However, it is a huge challenge to get such datasets in the medical domain. Towards this, we present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs). We add semi-supervised attention modules to generate images with convincing details. We treat tumor images and normal images as two domains. The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image. Furthermore, we show that generated medical images can be used for improving the performance of ResNet18 for medical image classification. Our model is applied to three limited datasets of tumor MRI images. We first generate MRI images on limited datasets, then we trained three popular classification models to get the best model for tumor classification. Finally, we train the classification model using real images with classic data augmentation methods and classification models using synthetic images. The classification results between those trained models showed that the proposed SAG-GAN data augmentation method can boost Accuracy and AUC compare with classic data augmentation methods. We believe the proposed data augmentation method can apply to other medical image domains, and improve the accuracy of computer-assisted diagnosis.