Abstract:We propose MatSci ML, a novel benchmark for modeling MATerials SCIence using Machine Learning (MatSci ML) methods focused on solid-state materials with periodic crystal structures. Applying machine learning methods to solid-state materials is a nascent field with substantial fragmentation largely driven by the great variety of datasets used to develop machine learning models. This fragmentation makes comparing the performance and generalizability of different methods difficult, thereby hindering overall research progress in the field. Building on top of open-source datasets, including large-scale datasets like the OpenCatalyst, OQMD, NOMAD, the Carolina Materials Database, and Materials Project, the MatSci ML benchmark provides a diverse set of materials systems and properties data for model training and evaluation, including simulated energies, atomic forces, material bandgaps, as well as classification data for crystal symmetries via space groups. The diversity of properties in MatSci ML makes the implementation and evaluation of multi-task learning algorithms for solid-state materials possible, while the diversity of datasets facilitates the development of new, more generalized algorithms and methods across multiple datasets. In the multi-dataset learning setting, MatSci ML enables researchers to combine observations from multiple datasets to perform joint prediction of common properties, such as energy and forces. Using MatSci ML, we evaluate the performance of different graph neural networks and equivariant point cloud networks on several benchmark tasks spanning single task, multitask, and multi-data learning scenarios. Our open-source code is available at https://github.com/IntelLabs/matsciml.
Abstract:We present a natural extension to E(n)-equivariant graph neural networks that uses multiple equivariant vectors per node. We formulate the extension and show that it improves performance across different physical systems benchmark tasks, with minimal differences in runtime or number of parameters. The proposed multichannel EGNN outperforms the standard singlechannel EGNN on N-body charged particle dynamics, molecular property predictions, and predicting the trajectories of solar system bodies. Given the additional benefits and minimal additional cost of multi-channel EGNN, we suggest that this extension may be of practical use to researchers working in machine learning for the physical sciences
Abstract:We present the Open MatSci ML Toolkit: a flexible, self-contained, and scalable Python-based framework to apply deep learning models and methods on scientific data with a specific focus on materials science and the OpenCatalyst Dataset. Our toolkit provides: 1. A scalable machine learning workflow for materials science leveraging PyTorch Lightning, which enables seamless scaling across different computation capabilities (laptop, server, cluster) and hardware platforms (CPU, GPU, XPU). 2. Deep Graph Library (DGL) support for rapid graph neural network prototyping and development. By publishing and sharing this toolkit with the research community via open-source release, we hope to: 1. Lower the entry barrier for new machine learning researchers and practitioners that want to get started with the OpenCatalyst dataset, which presently comprises the largest computational materials science dataset. 2. Enable the scientific community to apply advanced machine learning tools to high-impact scientific challenges, such as modeling of materials behavior for clean energy applications. We demonstrate the capabilities of our framework by enabling three new equivariant neural network models for multiple OpenCatalyst tasks and arrive at promising results for compute scaling and model performance.