Abstract:The automatic segmentation of kidney, kidney tumor and kidney cyst on Computed Tomography (CT) scans is a challenging task due to the indistinct lesion boundaries and fuzzy texture. Considering the large range and unbalanced distribution of CT scans' thickness, 2.5D ResUnet are adopted to build an efficient coarse-to-fine semantic segmentation framework in this work. A set of 489 CT scans are used for training and validation, and an independent never-before-used CT scans for testing. Finally, we demonstrate the effectiveness of our proposed method. The dice values on test set are 0.954, 0.792, 0.691, the surface dice values are 0.897, 0.591, 0.541 for kidney, tumor and cyst, respectively. The average inference time of each CT scan is 20.65s and the max GPU memory is 3525MB. The results suggest that a better trade-off between model performance and efficiency.
Abstract:Contrastive deep graph clustering, which aims to divide nodes into disjoint groups via contrastive mechanisms, is a challenging research spot. Among the recent works, hard sample mining-based algorithms have achieved great attention for their promising performance. However, we find that the existing hard sample mining methods have two problems as follows. 1) In the hardness measurement, the important structural information is overlooked for similarity calculation, degrading the representativeness of the selected hard negative samples. 2) Previous works merely focus on the hard negative sample pairs while neglecting the hard positive sample pairs. Nevertheless, samples within the same cluster but with low similarity should also be carefully learned. To solve the problems, we propose a novel contrastive deep graph clustering method dubbed Hard Sample Aware Network (HSAN) by introducing a comprehensive similarity measure criterion and a general dynamic sample weighing strategy. Concretely, in our algorithm, the similarities between samples are calculated by considering both the attribute embeddings and the structure embeddings, better revealing sample relationships and assisting hardness measurement. Moreover, under the guidance of the carefully collected high-confidence clustering information, our proposed weight modulating function will first recognize the positive and negative samples and then dynamically up-weight the hard sample pairs while down-weighting the easy ones. In this way, our method can mine not only the hard negative samples but also the hard positive sample, thus improving the discriminative capability of the samples further. Extensive experiments and analyses demonstrate the superiority and effectiveness of our proposed method.