Abstract:This paper proposes a distributed deep learning framework for privacy-preserving medical data training. In order to avoid patients' data leakage in medical platforms, the hidden layers in the deep learning framework are separated and where the first layer is kept in platform and others layers are kept in a centralized server. Whereas keeping the original patients' data in local platforms maintain their privacy, utilizing the server for subsequent layers improves learning performance by using all data from each platform during training.
Abstract:Computer-aided methods for analyzing white blood cells (WBC) have become widely popular due to the complexity of the manual process. Recent works have shown highly accurate segmentation and detection of white blood cells from microscopic blood images. However, the classification of the observed cells is still a challenge and highly demanded as the distribution of the five types reflects on the condition of the immune system. This work proposes W-Net, a CNN-based method for WBC classification. We evaluate W-Net on a real-world large-scale dataset, obtained from The Catholic University of Korea, that includes 6,562 real images of the five WBC types. W-Net achieves an average accuracy of 97%.
Abstract:Despite many attempts, the state-of-the-art of adversarial machine learning on malware detection systems generally yield unexecutable samples. In this work, we set out to examine the robustness of visualization-based malware detection system against adversarial examples (AEs) that not only are able to fool the model, but also maintain the executability of the original input. As such, we first investigate the application of existing off-the-shelf adversarial attack approaches on malware detection systems through which we found that those approaches do not necessarily maintain the functionality of the original inputs. Therefore, we proposed an approach to generate adversarial examples, COPYCAT, which is specifically designed for malware detection systems considering two main goals; achieving a high misclassification rate and maintaining the executability and functionality of the original input. We designed two main configurations for COPYCAT, namely AE padding and sample injection. While the first configuration results in untargeted misclassification attacks, the sample injection configuration is able to force the model to generate a targeted output, which is highly desirable in the malware attribution setting. We evaluate the performance of COPYCAT through an extensive set of experiments on two malware datasets, and report that we were able to generate adversarial samples that are misclassified at a rate of 98.9% and 96.5% with Windows and IoT binary datasets, respectively, outperforming the misclassification rates in the literature. Most importantly, we report that those AEs were executable unlike AEs generated by off-the-shelf approaches. Our transferability study demonstrates that the generated AEs through our proposed method can be generalized to other models.
Abstract:The main goal of this study is to investigate the robustness of graph-based Deep Learning (DL) models used for Internet of Things (IoT) malware classification against Adversarial Learning (AL). We designed two approaches to craft adversarial IoT software, including Off-the-Shelf Adversarial Attack (OSAA) methods, using six different AL attack approaches, and Graph Embedding and Augmentation (GEA). The GEA approach aims to preserve the functionality and practicality of the generated adversarial sample through a careful embedding of a benign sample to a malicious one. Our evaluations demonstrate that OSAAs are able to achieve a misclassification rate (MR) of 100%. Moreover, we observed that the GEA approach is able to misclassify all IoT malware samples as benign.