Abstract:When a deep learning model is sequentially trained on different datasets, it forgets the knowledge acquired from previous data, a phenomenon known as catastrophic forgetting. It deteriorates performance of the deep learning model on diverse datasets, which is critical in privacy-preserving deep learning (PPDL) applications based on transfer learning (TL). To overcome this, we propose review learning (RL), a generative-replay-based continual learning technique that does not require a separate generator. Data samples are generated from the memory stored within the synaptic weights of the deep learning model which are used to review knowledge acquired from previous datasets. The performance of RL was validated through PPDL experiments. Simulations and real-world medical multi-institutional experiments were conducted using three types of binary classification electronic health record data. In the real-world experiments, the global area under the receiver operating curve was 0.710 for RL and 0.655 for TL. Thus, RL was highly effective in retaining previously learned knowledge.
Abstract:This paper proposes a distributed deep learning framework for privacy-preserving medical data training. In order to avoid patients' data leakage in medical platforms, the hidden layers in the deep learning framework are separated and where the first layer is kept in platform and others layers are kept in a centralized server. Whereas keeping the original patients' data in local platforms maintain their privacy, utilizing the server for subsequent layers improves learning performance by using all data from each platform during training.