Abstract:Given the widespread use of safety-critical applications in the automotive field, it is crucial to ensure the Functional Safety (FuSa) of circuits and components within automotive systems. The Analog and Mixed-Signal (AMS) circuits prevalent in these systems are more vulnerable to faults induced by parametric perturbations, noise, environmental stress, and other factors, in comparison to their digital counterparts. However, their continuous signal characteristics present an opportunity for early anomaly detection, enabling the implementation of safety mechanisms to prevent system failure. To address this need, we propose a novel framework based on unsupervised machine learning for early anomaly detection in AMS circuits. The proposed approach involves injecting anomalies at various circuit locations and individual components to create a diverse and comprehensive anomaly dataset, followed by the extraction of features from the observed circuit signals. Subsequently, we employ clustering algorithms to facilitate anomaly detection. Finally, we propose a time series framework to enhance and expedite anomaly detection performance. Our approach encompasses a systematic analysis of anomaly abstraction at multiple levels pertaining to the automotive domain, from hardware- to block-level, where anomalies are injected to create diverse fault scenarios. By monitoring the system behavior under these anomalous conditions, we capture the propagation of anomalies and their effects at different abstraction levels, thereby potentially paving the way for the implementation of reliable safety mechanisms to ensure the FuSa of automotive SoCs. Our experimental findings indicate that our approach achieves 100% anomaly detection accuracy and significantly optimizes the associated latency by 5X, underscoring the effectiveness of our devised solution.
Abstract:This paper introduces FlexNN, a Flexible Neural Network accelerator, which adopts agile design principles to enable versatile dataflows, enhancing energy efficiency. Unlike conventional convolutional neural network accelerator architectures that adhere to fixed dataflows (such as input, weight, output, or row stationary) for transferring activations and weights between storage and compute units, our design revolutionizes by enabling adaptable dataflows of any type through software configurable descriptors. Considering that data movement costs considerably outweigh compute costs from an energy perspective, the flexibility in dataflow allows us to optimize the movement per layer for minimal data transfer and energy consumption, a capability unattainable in fixed dataflow architectures. To further enhance throughput and reduce energy consumption in the FlexNN architecture, we propose a novel sparsity-based acceleration logic that utilizes fine-grained sparsity in both the activation and weight tensors to bypass redundant computations, thus optimizing the convolution engine within the hardware accelerator. Extensive experimental results underscore a significant enhancement in the performance and energy efficiency of FlexNN relative to existing DNN accelerators.
Abstract:This paper presents a forecasting model designed using WSNs (Wireless Sensor Networks) to predict flood in rivers using simple and fast calculations to provide real-time results and save the lives of people who may be affected by the flood. Our prediction model uses multiple variable robust linear regression which is easy to understand and simple and cost effective in implementation, is speed efficient, but has low resource utilization and yet provides real time predictions with reliable accuracy, thus having features which are desirable in any real world algorithm. Our prediction model is independent of the number of parameters, i.e. any number of parameters may be added or removed based on the on-site requirements. When the water level rises, we represent it using a polynomial whose nature is used to determine if the water level may exceed the flood line in the near future. We compare our work with a contemporary algorithm to demonstrate our improvements over it. Then we present our simulation results for the predicted water level compared to the actual water level.