https://github.com/arghadippurdue/XAMBA.
State-Space Models (SSMs) have emerged as efficient alternatives to transformers for sequential data tasks, offering linear or near-linear scalability with sequence length, making them ideal for long-sequence applications in NLP, vision, and edge AI, including real-time transcription, translation, and contextual search. These applications require lightweight, high-performance models for deployment on resource-constrained devices like laptops and PCs. Designing specialized accelerators for every emerging neural network is costly and impractical; instead, optimizing models for existing NPUs in AI PCs provides a scalable solution. To this end, we propose XAMBA, the first framework to enable and optimize SSMs on commercial off-the-shelf (COTS) state-of-the-art (SOTA) NPUs. XAMBA follows a three-step methodology: (1) enabling SSMs on NPUs, (2) optimizing performance to meet KPI requirements, and (3) trading accuracy for additional performance gains. After enabling SSMs on NPUs, XAMBA mitigates key bottlenecks using CumBA and ReduBA, replacing sequential CumSum and ReduceSum operations with matrix-based computations, significantly improving execution speed and memory efficiency. Additionally, ActiBA enhances performance by approximating expensive activation functions (e.g., Swish, Softplus) using piecewise linear mappings, reducing latency with minimal accuracy loss. Evaluations on an Intel Core Ultra Series 2 AI PC show that XAMBA achieves up to 2.6X speed-up over the baseline. Our implementation is available at