Abstract:We propose a novel algorithm for offline reinforcement learning using optimal transport. Typically, in offline reinforcement learning, the data is provided by various experts and some of them can be sub-optimal. To extract an efficient policy, it is necessary to \emph{stitch} the best behaviors from the dataset. To address this problem, we rethink offline reinforcement learning as an optimal transportation problem. And based on this, we present an algorithm that aims to find a policy that maps states to a \emph{partial} distribution of the best expert actions for each given state. We evaluate the performance of our algorithm on continuous control problems from the D4RL suite and demonstrate improvements over existing methods.
Abstract:Learning conditional distributions $\pi^*(\cdot|x)$ is a central problem in machine learning, which is typically approached via supervised methods with paired data $(x,y) \sim \pi^*$. However, acquiring paired data samples is often challenging, especially in problems such as domain translation. This necessitates the development of $\textit{semi-supervised}$ models that utilize both limited paired data and additional unpaired i.i.d. samples $x \sim \pi^*_x$ and $y \sim \pi^*_y$ from the marginal distributions. The usage of such combined data is complex and often relies on heuristic approaches. To tackle this issue, we propose a new learning paradigm that integrates both paired and unpaired data $\textbf{seamlessly}$ through the data likelihood maximization techniques. We demonstrate that our approach also connects intriguingly with inverse entropic optimal transport (OT). This finding allows us to apply recent advances in computational OT to establish a $\textbf{light}$ learning algorithm to get $\pi^*(\cdot|x)$. Furthermore, we demonstrate through empirical tests that our method effectively learns conditional distributions using paired and unpaired data simultaneously.
Abstract:We propose the novel framework for generative modelling using hybrid energy-based models. In our method we combine the interpretable input gradients of the robust classifier and Langevin Dynamics for sampling. Using the adversarial training we improve not only the training stability, but robustness and generative modelling of the joint energy-based models.
Abstract:Adversarial examples are transferable between different models. In our paper, we propose to use this property for multi-step domain adaptation. In unsupervised domain adaptation settings, we demonstrate that replacing the source domain with adversarial examples to $\mathcal{H} \Delta \mathcal{H}$-divergence can improve source classifier accuracy on the target domain. Our method can be connected to most domain adaptation techniques. We conducted a range of experiments and achieved improvement in accuracy on Digits and Office-Home datasets.
Abstract:It was shown that adversarial examples improve object recognition. But what about their opposite side, easy examples? Easy examples are samples that the machine learning model classifies correctly with high confidence. In our paper, we are making the first step toward exploring the potential benefits of using easy examples in the training procedure of neural networks. We propose to use an auxiliary batch normalization for easy examples for the standard and robust accuracy improvement.
Abstract:We present a novel algorithm for domain adaptation using optimal transport. In domain adaptation, the goal is to adapt a classifier trained on the source domain samples to the target domain. In our method, we use optimal transport to map target samples to the domain named source fiction. This domain differs from the source but is accurately classified by the source domain classifier. Our main idea is to generate a source fiction by c-cyclically monotone transformation over the target domain. If samples with the same labels in two domains are c-cyclically monotone, the optimal transport map between these domains preserves the class-wise structure, which is the main goal of domain adaptation. To generate a source fiction domain, we propose an algorithm that is based on our finding that adversarial attacks are a c-cyclically monotone transformation of the dataset. We conduct experiments on Digits and Modern Office-31 datasets and achieve improvement in performance for simple discrete optimal transport solvers for all adaptation tasks.
Abstract:We present a novel neural-networks-based algorithm to compute optimal transport (OT) plans and maps for general cost functionals. The algorithm is based on a saddle point reformulation of the OT problem and generalizes prior OT methods for weak and strong cost functionals. As an application, we construct a functional to map data distributions with preserving the class-wise structure of data.
Abstract:Since the publication of the original Transformer architecture (Vaswani et al. 2017), Transformers revolutionized the field of Natural Language Processing. This, mainly due to their ability to understand timely dependencies better than competing RNN-based architectures. Surprisingly, this architecture change does not affect the field of Reinforcement Learning (RL), even though RNNs are quite popular in RL, and time dependencies are very common in RL. Recently, (Parisotto et al. 2019) conducted the first promising research of Transformers in RL. To support the findings of this work, this paper seeks to provide an additional example of a Transformer-based RL method. Specifically, the goal is a simple Transformer-based Deep Q-Learning method that is stable over several environments. Due to the unstable nature of Transformers and RL, an extensive method search was conducted to arrive at a final method that leverages developments around Transformers as well as Q-learning. The proposed method can match the performance of classic Q-learning on control environments while showing potential on some selected Atari benchmarks. Furthermore, it was critically evaluated to give additional insights into the relation between Transformers and RL.
Abstract:Modern generative learning is mainly associated with Generative Adversarial Networks (GANs). Training such networks is always hard due to the minimax nature of the optimization objective. In this paper we propose a novel algorithm for training generative models, which gets rid of mini-max GAN objective, thus significantly simplified model training. The proposed algorithm uses the variational approximation of Wasserstein-2 distances by Input Convex Neural Networks. We also provide the results of computational experiments, which confirms the efficiency of our algorithm in application to latent spaces optimal transport and image-to-image style transfer.
Abstract:The field of Machine Learning research is divided into subject areas, where each area tries to solve a specific problem, using specific methods. In recent years, borders have almost been erased, and many areas inherit methods from other areas. This trend leads to better results and the number of papers in the field is growing every year. The problem is that the amount of information is also growing, and many methods remain unknown in a large number of papers. In this work, we propose the concept of inheritance between machine learning models, which allows conducting research, processing much less information, and pay attention to previously unnoticed models. We hope that this project will allow researchers to find ways to improve their ideas. In addition, it can be used by researchers to publish their methods too. Project is available by link: https://www.infornopolitan.xyz/backronym