Abstract:We propose a novel algorithm for offline reinforcement learning using optimal transport. Typically, in offline reinforcement learning, the data is provided by various experts and some of them can be sub-optimal. To extract an efficient policy, it is necessary to \emph{stitch} the best behaviors from the dataset. To address this problem, we rethink offline reinforcement learning as an optimal transportation problem. And based on this, we present an algorithm that aims to find a policy that maps states to a \emph{partial} distribution of the best expert actions for each given state. We evaluate the performance of our algorithm on continuous control problems from the D4RL suite and demonstrate improvements over existing methods.
Abstract:We propose the novel framework for generative modelling using hybrid energy-based models. In our method we combine the interpretable input gradients of the robust classifier and Langevin Dynamics for sampling. Using the adversarial training we improve not only the training stability, but robustness and generative modelling of the joint energy-based models.