Abstract:Efforts to overcome catastrophic forgetting have primarily centered around developing more effective Continual Learning (CL) methods. In contrast, less attention was devoted to analyzing the role of network architecture design (e.g., network depth, width, and components) in contributing to CL. This paper seeks to bridge this gap between network architecture design and CL, and to present a holistic study on the impact of network architectures on CL. This work considers architecture design at the network scaling level, i.e., width and depth, and also at the network components, i.e., skip connections, global pooling layers, and down-sampling. In both cases, we first derive insights through systematically exploring how architectural designs affect CL. Then, grounded in these insights, we craft a specialized search space for CL and further propose a simple yet effective ArchCraft method to steer a CL-friendly architecture, namely, this method recrafts AlexNet/ResNet into AlexAC/ResAC. Experimental validation across various CL settings and scenarios demonstrates that improved architectures are parameter-efficient, achieving state-of-the-art performance of CL while being 86%, 61%, and 97% more compact in terms of parameters than the naive CL architecture in Task IL and Class IL. Code is available at https://github.com/byyx666/ArchCraft.
Abstract:Model generalization ability upon incrementally acquiring dynamically updating knowledge from sequentially arriving tasks is crucial to tackle the sensitivity-stability dilemma in Continual Learning (CL). Weight loss landscape sharpness minimization seeking for flat minima lying in neighborhoods with uniform low loss or smooth gradient is proven to be a strong training regime improving model generalization compared with loss minimization based optimizer like SGD. Yet only a few works have discussed this training regime for CL, proving that dedicated designed zeroth-order sharpness optimizer can improve CL performance. In this work, we propose a Continual Flatness (C-Flat) method featuring a flatter loss landscape tailored for CL. C-Flat could be easily called with only one line of code and is plug-and-play to any CL methods. A general framework of C-Flat applied to all CL categories and a thorough comparison with loss minima optimizer and flat minima based CL approaches is presented in this paper, showing that our method can boost CL performance in almost all cases. Code will be publicly available upon publication.
Abstract:As Pre-trained Language Models (PLMs), a popular approach for code intelligence, continue to grow in size, the computational cost of their usage has become prohibitively expensive. Prompt learning, a recent development in the field of natural language processing, emerges as a potential solution to address this challenge. In this paper, we investigate the effectiveness of prompt learning in code intelligence tasks. We unveil its reliance on manually designed prompts, which often require significant human effort and expertise. Moreover, we discover existing automatic prompt design methods are very limited to code intelligence tasks due to factors including gradient dependence, high computational demands, and limited applicability. To effectively address both issues, we propose Genetic Auto Prompt (GenAP), which utilizes an elaborate genetic algorithm to automatically design prompts. With GenAP, non-experts can effortlessly generate superior prompts compared to meticulously manual-designed ones. GenAP operates without the need for gradients or additional computational costs, rendering it gradient-free and cost-effective. Moreover, GenAP supports both understanding and generation types of code intelligence tasks, exhibiting great applicability. We conduct GenAP on three popular code intelligence PLMs with three canonical code intelligence tasks including defect prediction, code summarization, and code translation. The results suggest that GenAP can effectively automate the process of designing prompts. Specifically, GenAP outperforms all other methods across all three tasks (e.g., improving accuracy by an average of 2.13% for defect prediction). To the best of our knowledge, GenAP is the first work to automatically design prompts for code intelligence PLMs.