Abstract:When building a predictive model, it is often difficult to ensure that domain-specific requirements are encoded by the model that will eventually be deployed. Consider researchers working on hate speech detection. They will have an idea of what is considered hate speech, but building a model that reflects their view accurately requires preserving those ideals throughout the workflow of data set construction and model training. Complications such as sampling bias, annotation bias, and model misspecification almost always arise, possibly resulting in a gap between the domain specification and the model's actual behavior upon deployment. To address this issue for hate speech detection, we propose DefVerify: a 3-step procedure that (i) encodes a user-specified definition of hate speech, (ii) quantifies to what extent the model reflects the intended definition, and (iii) tries to identify the point of failure in the workflow. We use DefVerify to find gaps between definition and model behavior when applied to six popular hate speech benchmark datasets.
Abstract:Subjective tasks in NLP have been mostly relegated to objective standards, where the gold label is decided by taking the majority vote. This obfuscates annotator disagreement and the inherent uncertainty of the label. We argue that subjectivity should factor into model decisions and play a direct role via calibration under a selective prediction setting. Specifically, instead of calibrating confidence purely from the model's perspective, we calibrate models for subjective tasks based on crowd worker agreement. Our method, Crowd-Calibrator, models the distance between the distribution of crowd worker labels and the model's own distribution over labels to inform whether the model should abstain from a decision. On two highly subjective tasks, hate speech detection and natural language inference, our experiments show Crowd-Calibrator either outperforms or achieves competitive performance with existing selective prediction baselines. Our findings highlight the value of bringing human decision-making into model predictions.
Abstract:Fairness in classification tasks has traditionally focused on bias removal from neural representations, but recent trends favor algorithmic methods that embed fairness into the training process. These methods steer models towards fair performance, preventing potential elimination of valuable information that arises from representation manipulation. Reinforcement Learning (RL), with its capacity for learning through interaction and adjusting reward functions to encourage desired behaviors, emerges as a promising tool in this domain. In this paper, we explore the usage of RL to address bias in imbalanced classification by scaling the reward function to mitigate bias. We employ the contextual multi-armed bandit framework and adapt three popular RL algorithms to suit our objectives, demonstrating a novel approach to mitigating bias.
Abstract:Language models trained on large amounts of data require careful tuning to be safely deployed in real world. We revisit the guided decoding paradigm, where the goal is to augment the logits of the base language model using the scores from a task-specific reward model. We propose a simple but efficient parameterization of the autoregressive reward model enabling fast and effective guided decoding. On detoxification and sentiment control tasks, we show that our efficient parameterization performs on par with RAD, a strong but less efficient guided decoding approach.
Abstract:For a viewpoint-diverse news recommender, identifying whether two news articles express the same viewpoint is essential. One way to determine "same or different" viewpoint is stance detection. In this paper, we investigate the robustness of operationalization choices for few-shot stance detection, with special attention to modelling stance across different topics. Our experiments test pre-registered hypotheses on stance detection. Specifically, we compare two stance task definitions (Pro/Con versus Same Side Stance), two LLM architectures (bi-encoding versus cross-encoding), and adding Natural Language Inference knowledge, with pre-trained RoBERTa models trained with shots of 100 examples from 7 different stance detection datasets. Some of our hypotheses and claims from earlier work can be confirmed, while others give more inconsistent results. The effect of the Same Side Stance definition on performance differs per dataset and is influenced by other modelling choices. We found no relationship between the number of training topics in the training shots and performance. In general, cross-encoding out-performs bi-encoding, and adding NLI training to our models gives considerable improvement, but these results are not consistent across all datasets. Our results indicate that it is essential to include multiple datasets and systematic modelling experiments when aiming to find robust modelling choices for the concept `stance'.
Abstract:Post-hoc explanation methods are an important tool for increasing model transparency for users. Unfortunately, the currently used methods for attributing token importance often yield diverging patterns. In this work, we study potential sources of disagreement across methods from a linguistic perspective. We find that different methods systematically select different classes of words and that methods that agree most with other methods and with humans display similar linguistic preferences. Token-level differences between methods are smoothed out if we compare them on the syntactic span level. We also find higher agreement across methods by estimating the most important spans dynamically instead of relying on a fixed subset of size $k$. We systematically investigate the interaction between $k$ and spans and propose an improved configuration for selecting important tokens.
Abstract:Feature attribution scores are used for explaining the prediction of a text classifier to users by highlighting a k number of tokens. In this work, we propose a way to determine the number of optimal k tokens that should be displayed from sequential properties of the attribution scores. Our approach is dynamic across sentences, method-agnostic, and deals with sentence length bias. We compare agreement between multiple methods and humans on an NLI task, using fixed k and dynamic k. We find that perturbation-based methods and Vanilla Gradient exhibit highest agreement on most method--method and method--human agreement metrics with a static k. Their advantage over other methods disappears with dynamic ks which mainly improve Integrated Gradient and GradientXInput. To our knowledge, this is the first evidence that sequential properties of attribution scores are informative for consolidating attribution signals for human interpretation.
Abstract:News recommender systems play an increasingly influential role in shaping information access within democratic societies. However, tailoring recommendations to users' specific interests can result in the divergence of information streams. Fragmented access to information poses challenges to the integrity of the public sphere, thereby influencing democracy and public discourse. The Fragmentation metric quantifies the degree of fragmentation of information streams in news recommendations. Accurate measurement of this metric requires the application of Natural Language Processing (NLP) to identify distinct news events, stories, or timelines. This paper presents an extensive investigation of various approaches for quantifying Fragmentation in news recommendations. These approaches are evaluated both intrinsically, by measuring performance on news story clustering, and extrinsically, by assessing the Fragmentation scores of different simulated news recommender scenarios. Our findings demonstrate that agglomerative hierarchical clustering coupled with SentenceBERT text representation is substantially better at detecting Fragmentation than earlier implementations. Additionally, the analysis of simulated scenarios yields valuable insights and recommendations for stakeholders concerning the measurement and interpretation of Fragmentation.
Abstract:Bias elimination and recent probing studies attempt to remove specific information from embedding spaces. Here it is important to remove as much of the target information as possible, while preserving any other information present. INLP is a popular recent method which removes specific information through iterative nullspace projections. Multiple iterations, however, increase the risk that information other than the target is negatively affected. We introduce two methods that find a single targeted projection: Mean Projection (MP, more efficient) and Tukey Median Projection (TMP, with theoretical guarantees). Our comparison between MP and INLP shows that (1) one MP projection removes linear separability based on the target and (2) MP has less impact on the overall space. Further analysis shows that applying random projections after MP leads to the same overall effects on the embedding space as the multiple projections of INLP. Applying one targeted (MP) projection hence is methodologically cleaner than applying multiple (INLP) projections that introduce random effects.
Abstract:Abbreviations present a significant challenge for NLP systems because they cause tokenization and out-of-vocabulary errors. They can also make the text less readable, especially in reference printed books, where they are extensively used. Abbreviations are especially problematic in low-resource settings, where systems are less robust to begin with. In this paper, we propose a new method for addressing the problems caused by a high density of domain-specific abbreviations in a text. We apply this method to the case of a Slovenian biographical lexicon and evaluate it on a newly developed gold-standard dataset of 51 Slovenian biographies. Our abbreviation identification method performs significantly better than commonly used ad-hoc solutions, especially at identifying unseen abbreviations. We also propose and present the results of a method for expanding the identified abbreviations in context.