Abstract:We propose a novel framework that leverages Visual Question Answering (VQA) models to automate the evaluation of LLM-generated data visualizations. Traditional evaluation methods often rely on human judgment, which is costly and unscalable, or focus solely on data accuracy, neglecting the effectiveness of visual communication. By employing VQA models, we assess data representation quality and the general communicative clarity of charts. Experiments were conducted using two leading VQA benchmark datasets, ChartQA and PlotQA, with visualizations generated by OpenAI's GPT-3.5 Turbo and Meta's Llama 3.1 70B-Instruct models. Our results indicate that LLM-generated charts do not match the accuracy of the original non-LLM-generated charts based on VQA performance measures. Moreover, while our results demonstrate that few-shot prompting significantly boosts the accuracy of chart generation, considerable progress remains to be made before LLMs can fully match the precision of human-generated graphs. This underscores the importance of our work, which expedites the research process by enabling rapid iteration without the need for human annotation, thus accelerating advancements in this field.
Abstract:Multi-agent strategies have emerged as a promising approach to enhance the reasoning abilities of Large Language Models (LLMs) by assigning specialized roles in the problem-solving process. Concurrently, Tree of Thoughts (ToT) methods have shown potential in improving reasoning for complex question-answering tasks by exploring diverse reasoning paths. A critical limitation in multi-agent reasoning is the 'Reasoner' agent's shallow exploration of reasoning paths. While ToT strategies could help mitigate this problem, they may generate flawed reasoning branches, which could harm the trustworthiness of the final answer. To leverage the strengths of both multi-agent reasoning and ToT strategies, we introduce a novel approach combining ToT-based Reasoner agents with a Thought Validator agent. Multiple Reasoner agents operate in parallel, employing ToT to explore diverse reasoning paths. The Thought Validator then scrutinizes these paths, considering a Reasoner's conclusion only if its reasoning is valid. This method enables a more robust voting strategy by discarding faulty reasoning paths, enhancing the system's ability to tackle tasks requiring systematic and trustworthy reasoning. Our method demonstrates superior performance compared to existing techniques when evaluated on the GSM8K dataset, outperforming the standard ToT strategy by an average 5.6\% across four LLMs.
Abstract:Event detection and text reasoning have become critical applications across various domains. While LLMs have recently demonstrated impressive progress in reasoning abilities, they often struggle with event detection, particularly due to the absence of training methods that consider causal relationships between event triggers and types. To address this challenge, we propose a novel approach for instruction fine-tuning LLMs for event detection. Our method introduces Semantic Causal Graphs (SCGs) to capture both causal relationships and contextual information within text. Building off of SCGs, we propose SCG Instructions for fine-tuning LLMs by focusing on event triggers and their relationships to event types, and employ Low-Rank Adaptation (LoRA) to help preserve the general reasoning abilities of LLMs. Our evaluations demonstrate that training LLMs with SCG Instructions outperforms standard instruction fine-tuning by an average of 35.69\% on Event Trigger Classification. Notably, our fine-tuned Mistral 7B model also outperforms GPT-4 on key event detection metrics by an average of 31.01\% on Event Trigger Identification, 37.40\% on Event Trigger Classification, and 16.43\% on Event Classification. We analyze the retention of general capabilities, observing only a minimal average drop of 2.03 points across six benchmarks. This comprehensive study investigates multiple LLMs for the event detection task across various datasets, prompting strategies, and training approaches.
Abstract:Large language models (LLMs) often struggle with temporal reasoning, crucial for tasks like historical event analysis and time-sensitive information retrieval. Despite advancements, state-of-the-art models falter in handling temporal information, especially when faced with irrelevant or noisy contexts. This paper addresses this gap by empirically examining the robustness of temporal question-answering (TQA) systems trained on various context types, including relevant, irrelevant, slightly altered, and no context. Our findings indicate that training with a mix of these contexts enhances model robustness and accuracy. Additionally, we show that the position of context relative to the question significantly impacts performance, with question-first positioning yielding better results. We introduce two new context-rich TQA datasets, ContextAQA and ContextTQE, and provide comprehensive evaluations and guidelines for training robust TQA models. Our work lays the foundation for developing reliable and context-aware temporal QA systems, with broader implications for enhancing LLM robustness against diverse and potentially adversarial information.
Abstract:Recognizing the promise of natural language interfaces to databases, prior studies have emphasized the development of text-to-SQL systems. While substantial progress has been made in this field, existing research has concentrated on generating SQL statements from text queries. The broader challenge, however, lies in inferring new information about the returned data. Our research makes two major contributions to address this gap. First, we introduce a novel Internet-of-Things (IoT) text-to-SQL dataset comprising 10,985 text-SQL pairs and 239,398 rows of network traffic activity. The dataset contains additional query types limited in prior text-to-SQL datasets, notably temporal-related queries. Our dataset is sourced from a smart building's IoT ecosystem exploring sensor read and network traffic data. Second, our dataset allows two-stage processing, where the returned data (network traffic) from a generated SQL can be categorized as malicious or not. Our results show that joint training to query and infer information about the data can improve overall text-to-SQL performance, nearly matching substantially larger models. We also show that current large language models (e.g., GPT3.5) struggle to infer new information about returned data, thus our dataset provides a novel test bed for integrating complex domain-specific reasoning into LLMs.
Abstract:Radiology report summarization (RRS) is crucial for patient care, requiring concise "Impressions" from detailed "Findings." This paper introduces a novel prompting strategy to enhance RRS by first generating a layperson summary. This approach normalizes key observations and simplifies complex information using non-expert communication techniques inspired by doctor-patient interactions. Combined with few-shot in-context learning, this method improves the model's ability to link general terms to specific findings. We evaluate this approach on the MIMIC-CXR, CheXpert, and MIMIC-III datasets, benchmarking it against 7B/8B parameter state-of-the-art open-source large language models (LLMs) like Meta-Llama-3-8B-Instruct. Our results demonstrate improvements in summarization accuracy and accessibility, particularly in out-of-domain tests, with improvements as high as 5% for some metrics.
Abstract:Relational databases are integral to modern information systems, serving as the foundation for storing, querying, and managing data efficiently and effectively. Advancements in large language modeling have led to the emergence of text-to-SQL technologies, significantly enhancing the querying and extracting of information from these databases and raising concerns about privacy and security. Our research extracts the database schema elements underlying a text-to-SQL model. Knowledge of the schema can make attacks such as SQL injection easier. By asking specially crafted questions, we have developed a zero-knowledge framework designed to probe various database schema elements without knowledge of the database itself. The text-to-SQL models then process these questions to produce an output that we use to uncover the structure of the database schema. We apply it to specialized text-to-SQL models fine-tuned on text-SQL pairs and generative language models used for SQL generation. Overall, we can reconstruct the table names with an F1 of nearly .75 for fine-tuned models and .96 for generative.
Abstract:In this paper, we present our system for the SemEval Task 5, The Legal Argument Reasoning Task in Civil Procedure Challenge. Legal argument reasoning is an essential skill that all law students must master. Moreover, it is important to develop natural language processing solutions that can reason about a question given terse domain-specific contextual information. Our system explores a prompt-based solution using GPT4 to reason over legal arguments. We also evaluate an ensemble of prompting strategies, including chain-of-thought reasoning and in-context learning. Overall, our system results in a Macro F1 of .8095 on the validation dataset and .7315 (5th out of 21 teams) on the final test set. Code for this project is available at https://github.com/danschumac1/CivilPromptReasoningGPT4.
Abstract:Automatic Speech Recognition (ASR) technology is fundamental in transcribing spoken language into text, with considerable applications in the clinical realm, including streamlining medical transcription and integrating with Electronic Health Record (EHR) systems. Nevertheless, challenges persist, especially when transcriptions contain noise, leading to significant drops in performance when Natural Language Processing (NLP) models are applied. Named Entity Recognition (NER), an essential clinical task, is particularly affected by such noise, often termed the ASR-NLP gap. Prior works have primarily studied ASR's efficiency in clean recordings, leaving a research gap concerning the performance in noisy environments. This paper introduces a novel dataset, BioASR-NER, designed to bridge the ASR-NLP gap in the biomedical domain, focusing on extracting adverse drug reactions and mentions of entities from the Brief Test of Adult Cognition by Telephone (BTACT) exam. Our dataset offers a comprehensive collection of almost 2,000 clean and noisy recordings. In addressing the noise challenge, we present an innovative transcript-cleaning method using GPT4, investigating both zero-shot and few-shot methodologies. Our study further delves into an error analysis, shedding light on the types of errors in transcription software, corrections by GPT4, and the challenges GPT4 faces. This paper aims to foster improved understanding and potential solutions for the ASR-NLP gap, ultimately supporting enhanced healthcare documentation practices.
Abstract:With the recent proliferation of Large Language Models (LLMs), there has been an increasing demand for tools to detect machine-generated text. The effective detection of machine-generated text face two pertinent problems: First, they are severely limited in generalizing against real-world scenarios, where machine-generated text is produced by a variety of generators, including but not limited to GPT-4 and Dolly, and spans diverse domains, ranging from academic manuscripts to social media posts. Second, existing detection methodologies treat texts produced by LLMs through a restrictive binary classification lens, neglecting the nuanced diversity of artifacts generated by different LLMs. In this work, we undertake a systematic study on the detection of machine-generated text in real-world scenarios. We first study the effectiveness of state-of-the-art approaches and find that they are severely limited against text produced by diverse generators and domains in the real world. Furthermore, t-SNE visualizations of the embeddings from a pretrained LLM's encoder show that they cannot reliably distinguish between human and machine-generated text. Based on our findings, we introduce a novel system, T5LLMCipher, for detecting machine-generated text using a pretrained T5 encoder combined with LLM embedding sub-clustering to address the text produced by diverse generators and domains in the real world. We evaluate our approach across 9 machine-generated text systems and 9 domains and find that our approach provides state-of-the-art generalization ability, with an average increase in F1 score on machine-generated text of 19.6\% on unseen generators and domains compared to the top performing existing approaches and correctly attributes the generator of text with an accuracy of 93.6\%.