Abstract:Multi-agent strategies have emerged as a promising approach to enhance the reasoning abilities of Large Language Models (LLMs) by assigning specialized roles in the problem-solving process. Concurrently, Tree of Thoughts (ToT) methods have shown potential in improving reasoning for complex question-answering tasks by exploring diverse reasoning paths. A critical limitation in multi-agent reasoning is the 'Reasoner' agent's shallow exploration of reasoning paths. While ToT strategies could help mitigate this problem, they may generate flawed reasoning branches, which could harm the trustworthiness of the final answer. To leverage the strengths of both multi-agent reasoning and ToT strategies, we introduce a novel approach combining ToT-based Reasoner agents with a Thought Validator agent. Multiple Reasoner agents operate in parallel, employing ToT to explore diverse reasoning paths. The Thought Validator then scrutinizes these paths, considering a Reasoner's conclusion only if its reasoning is valid. This method enables a more robust voting strategy by discarding faulty reasoning paths, enhancing the system's ability to tackle tasks requiring systematic and trustworthy reasoning. Our method demonstrates superior performance compared to existing techniques when evaluated on the GSM8K dataset, outperforming the standard ToT strategy by an average 5.6\% across four LLMs.
Abstract:With growing applications of Machine Learning (ML) techniques in the real world, it is highly important to ensure that these models work in an equitable manner. One main step in ensuring fairness is to effectively measure fairness, and to this end, various metrics have been proposed in the past literature. While the computation of those metrics are straightforward in the classification set-up, it is computationally intractable in the regression domain. To address the challenge of computational intractability, past literature proposed various methods to approximate such metrics. However, they did not verify the extent to which the output of such approximation algorithms are consistent with each other. To fill this gap, this paper comprehensively studies the consistency of the output of various fairness measurement methods through conducting an extensive set of experiments on various regression tasks. As a result, it finds that while some fairness measurement approaches show strong consistency across various regression tasks, certain methods show a relatively poor consistency in certain regression tasks. This, in turn, calls for a more principled approach for measuring fairness in the regression domain.