Abstract:Automatic Speech Recognition (ASR) technology is fundamental in transcribing spoken language into text, with considerable applications in the clinical realm, including streamlining medical transcription and integrating with Electronic Health Record (EHR) systems. Nevertheless, challenges persist, especially when transcriptions contain noise, leading to significant drops in performance when Natural Language Processing (NLP) models are applied. Named Entity Recognition (NER), an essential clinical task, is particularly affected by such noise, often termed the ASR-NLP gap. Prior works have primarily studied ASR's efficiency in clean recordings, leaving a research gap concerning the performance in noisy environments. This paper introduces a novel dataset, BioASR-NER, designed to bridge the ASR-NLP gap in the biomedical domain, focusing on extracting adverse drug reactions and mentions of entities from the Brief Test of Adult Cognition by Telephone (BTACT) exam. Our dataset offers a comprehensive collection of almost 2,000 clean and noisy recordings. In addressing the noise challenge, we present an innovative transcript-cleaning method using GPT4, investigating both zero-shot and few-shot methodologies. Our study further delves into an error analysis, shedding light on the types of errors in transcription software, corrections by GPT4, and the challenges GPT4 faces. This paper aims to foster improved understanding and potential solutions for the ASR-NLP gap, ultimately supporting enhanced healthcare documentation practices.
Abstract:Language models have seen significant growth in the size of their corpus, leading to notable performance improvements. Yet, there has been limited progress in developing models that handle smaller, more human-like datasets. As part of the BabyLM shared task, this study explores the impact of reinforcement learning from human feedback (RLHF) on language models pretrained from scratch with a limited training corpus. Comparing two GPT-2 variants, the larger model performs better in storytelling tasks after RLHF fine-tuning. These findings suggest that RLHF techniques may be more advantageous for larger models due to their higher learning and adaptation capacity, though more experiments are needed to confirm this finding. These insights highlight the potential benefits of RLHF fine-tuning for language models within limited data, enhancing their ability to maintain narrative focus and coherence while adhering better to initial instructions in storytelling tasks. The code for this work is publicly at https://github.com/Zephyr1022/BabyStories-UTSA.