Abstract:Recognizing the promise of natural language interfaces to databases, prior studies have emphasized the development of text-to-SQL systems. While substantial progress has been made in this field, existing research has concentrated on generating SQL statements from text queries. The broader challenge, however, lies in inferring new information about the returned data. Our research makes two major contributions to address this gap. First, we introduce a novel Internet-of-Things (IoT) text-to-SQL dataset comprising 10,985 text-SQL pairs and 239,398 rows of network traffic activity. The dataset contains additional query types limited in prior text-to-SQL datasets, notably temporal-related queries. Our dataset is sourced from a smart building's IoT ecosystem exploring sensor read and network traffic data. Second, our dataset allows two-stage processing, where the returned data (network traffic) from a generated SQL can be categorized as malicious or not. Our results show that joint training to query and infer information about the data can improve overall text-to-SQL performance, nearly matching substantially larger models. We also show that current large language models (e.g., GPT3.5) struggle to infer new information about returned data, thus our dataset provides a novel test bed for integrating complex domain-specific reasoning into LLMs.
Abstract:The development of therapeutic targets for COVID-19 treatment is based on the understanding of the molecular mechanism of pathogenesis. The identification of genes and proteins involved in the infection mechanism is the key to shed out light into the complex molecular mechanisms. The combined effort of many laboratories distributed throughout the world has produced the accumulation of both protein and genetic interactions. In this work we integrate these available results and we obtain an host protein-protein interaction network composed by 1432 human proteins. We calculate network centrality measures to identify key proteins. Then we perform functional enrichment of central proteins. We observed that the identified proteins are mostly associated with several crucial pathways, including cellular process, signalling transduction, neurodegenerative disease. Finally, we focused on proteins involved in causing disease in the human respiratory tract. We conclude that COVID19 is a complex disease, and we highlighted many potential therapeutic targets including RBX1, HSPA5, ITCH, RAB7A, RAB5A, RAB8A, PSMC5, CAPZB, CANX, IGF2R, HSPA1A, which are central and also associated with multiple diseases