Abstract:This study demonstrates a novel use of the U-Net architecture in the field of semantic segmentation to detect landforms using preprocessed satellite imagery. The study applies the U-Net model for effective feature extraction by using Convolutional Neural Network (CNN) segmentation techniques. Dropout is strategically used for regularization to improve the model's perseverance, and the Adam optimizer is used for effective training. The study thoroughly assesses the performance of the U-Net architecture utilizing a large sample of preprocessed satellite topographical images. The model excels in semantic segmentation tasks, displaying high-resolution outputs, quick feature extraction, and flexibility to a wide range of applications. The findings highlight the U-Net architecture's substantial contribution to the advancement of machine learning and image processing technologies. The U-Net approach, which emphasizes pixel-wise categorization and comprehensive segmentation map production, is helpful in practical applications such as autonomous driving, disaster management, and land use planning. This study not only investigates the complexities of U-Net architecture for semantic segmentation, but also highlights its real-world applications in image classification, analysis, and landform identification. The study demonstrates the U-Net model's key significance in influencing the environment of modern technology.
Abstract:With the help of a digital twin structure, Agriculture 4.0 technologies like weather APIs (Application programming interface), GPS (Global Positioning System) modules, and NPK (Nitrogen, Phosphorus and Potassium) soil sensors and machine learning recommendation models, we seek to revolutionize agricultural production through this concept. In addition to providing precise crop growth forecasts, the combination of real-time data on soil composition, meteorological dynamics, and geographic coordinates aims to support crop recommendation models and simulate predictive scenarios for improved water and pesticide management.
Abstract:We have witnessed significant progress in deep learning-based 3D vision, ranging from neural radiance field (NeRF) based 3D representation learning to applications in novel view synthesis (NVS). However, existing scene-level datasets for deep learning-based 3D vision, limited to either synthetic environments or a narrow selection of real-world scenes, are quite insufficient. This insufficiency not only hinders a comprehensive benchmark of existing methods but also caps what could be explored in deep learning-based 3D analysis. To address this critical gap, we present DL3DV-10K, a large-scale scene dataset, featuring 51.2 million frames from 10,510 videos captured from 65 types of point-of-interest (POI) locations, covering both bounded and unbounded scenes, with different levels of reflection, transparency, and lighting. We conducted a comprehensive benchmark of recent NVS methods on DL3DV-10K, which revealed valuable insights for future research in NVS. In addition, we have obtained encouraging results in a pilot study to learn generalizable NeRF from DL3DV-10K, which manifests the necessity of a large-scale scene-level dataset to forge a path toward a foundation model for learning 3D representation. Our DL3DV-10K dataset, benchmark results, and models will be publicly accessible at https://dl3dv-10k.github.io/DL3DV-10K/.