Abstract:Evaluating LLM-generated text has become a key challenge, especially in domain-specific contexts like the medical field. This work introduces a novel evaluation methodology for LLM-generated medical explanatory arguments, relying on Proxy Tasks and rankings to closely align results with human evaluation criteria, overcoming the biases typically seen in LLMs used as judges. We demonstrate that the proposed evaluators are robust against adversarial attacks, including the assessment of non-argumentative text. Additionally, the human-crafted arguments needed to train the evaluators are minimized to just one example per Proxy Task. By examining multiple LLM-generated arguments, we establish a methodology for determining whether a Proxy Task is suitable for evaluating LLM-generated medical explanatory arguments, requiring only five examples and two human experts.
Abstract:The utilization of clinical reports for various secondary purposes, including health research and treatment monitoring, is crucial for enhancing patient care. Natural Language Processing (NLP) tools have emerged as valuable assets for extracting and processing relevant information from these reports. However, the availability of specialized language models for the clinical domain in Spanish has been limited. In this paper, we introduce EriBERTa, a bilingual domain-specific language model pre-trained on extensive medical and clinical corpora. We demonstrate that EriBERTa outperforms previous Spanish language models in the clinical domain, showcasing its superior capabilities in understanding medical texts and extracting meaningful information. Moreover, EriBERTa exhibits promising transfer learning abilities, allowing for knowledge transfer from one language to another. This aspect is particularly beneficial given the scarcity of Spanish clinical data.
Abstract:Relation extraction systems require large amounts of labeled examples which are costly to annotate. In this work we reformulate relation extraction as an entailment task, with simple, hand-made, verbalizations of relations produced in less than 15 min per relation. The system relies on a pretrained textual entailment engine which is run as-is (no training examples, zero-shot) or further fine-tuned on labeled examples (few-shot or fully trained). In our experiments on TACRED we attain 63% F1 zero-shot, 69% with 16 examples per relation (17% points better than the best supervised system on the same conditions), and only 4 points short to the state-of-the-art (which uses 20 times more training data). We also show that the performance can be improved significantly with larger entailment models, up to 12 points in zero-shot, allowing to report the best results to date on TACRED when fully trained. The analysis shows that our few-shot systems are specially effective when discriminating between relations, and that the performance difference in low data regimes comes mainly from identifying no-relation cases.
Abstract:Word embeddings and pre-trained language models allow to build rich representations of text and have enabled improvements across most NLP tasks. Unfortunately they are very expensive to train, and many small companies and research groups tend to use models that have been pre-trained and made available by third parties, rather than building their own. This is suboptimal as, for many languages, the models have been trained on smaller (or lower quality) corpora. In addition, monolingual pre-trained models for non-English languages are not always available. At best, models for those languages are included in multilingual versions, where each language shares the quota of substrings and parameters with the rest of the languages. This is particularly true for smaller languages such as Basque. In this paper we show that a number of monolingual models (FastText word embeddings, FLAIR and BERT language models) trained with larger Basque corpora produce much better results than publicly available versions in downstream NLP tasks, including topic classification, sentiment classification, PoS tagging and NER. This work sets a new state-of-the-art in those tasks for Basque. All benchmarks and models used in this work are publicly available.
Abstract:Hyperlinks and other relations in Wikipedia are a extraordinary resource which is still not fully understood. In this paper we study the different types of links in Wikipedia, and contrast the use of the full graph with respect to just direct links. We apply a well-known random walk algorithm on two tasks, word relatedness and named-entity disambiguation. We show that using the full graph is more effective than just direct links by a large margin, that non-reciprocal links harm performance, and that there is no benefit from categories and infoboxes, with coherent results on both tasks. We set new state-of-the-art figures for systems based on Wikipedia links, comparable to systems exploiting several information sources and/or supervised machine learning. Our approach is open source, with instruction to reproduce results, and amenable to be integrated with complementary text-based methods.