Abstract:In text documents such as news articles, the content and key events usually revolve around a subset of all the entities mentioned in a document. These entities, often deemed as salient entities, provide useful cues of the aboutness of a document to a reader. Identifying the salience of entities was found helpful in several downstream applications such as search, ranking, and entity-centric summarization, among others. Prior work on salient entity detection mainly focused on machine learning models that require heavy feature engineering. We show that fine-tuning medium-sized language models with a cross-encoder style architecture yields substantial performance gains over feature engineering approaches. To this end, we conduct a comprehensive benchmarking of four publicly available datasets using models representative of the medium-sized pre-trained language model family. Additionally, we show that zero-shot prompting of instruction-tuned language models yields inferior results, indicating the task's uniqueness and complexity.
Abstract:Driven by encouraging results on a wide range of tasks, the field of NLP is experiencing an accelerated race to develop bigger language models. This race for bigger models has also underscored the need to continue the pursuit of practical distillation approaches that can leverage the knowledge acquired by these big models in a compute-efficient manner. Having this goal in mind, we build on recent work to propose a hallucination-free framework for sequence tagging that is especially suited for distillation. We show empirical results of new state-of-the-art performance across multiple sequence labelling datasets and validate the usefulness of this framework for distilling a large model in a few-shot learning scenario.
Abstract:Stochastic gradient descent without replacement sampling is widely used in practice for model training. However, the vast majority of SGD analyses assumes data sampled with replacement, and when the function minimized is strongly convex, an $\mathcal{O}\left(\frac{1}{T}\right)$ rate can be established when SGD is run for $T$ iterations. A recent line of breakthrough work on SGD without replacement (SGDo) established an $\mathcal{O}\left(\frac{n}{T^2}\right)$ convergence rate when the function minimized is strongly convex and is a sum of $n$ smooth functions, and an $\mathcal{O}\left(\frac{1}{T^2}+\frac{n^3}{T^3}\right)$ rate for sums of quadratics. On the other hand, the tightest known lower bound postulates an $\Omega\left(\frac{1}{T^2}+\frac{n^2}{T^3}\right)$ rate, leaving open the possibility of better SGDo convergence rates in the general case. In this paper, we close this gap and show that SGD without replacement achieves a rate of $\mathcal{O}\left(\frac{1}{T^2}+\frac{n^2}{T^3}\right)$ when the sum of the functions is a quadratic, and offer a new lower bound of $\Omega\left(\frac{n}{T^2}\right)$ for strongly convex functions that are sums of smooth functions.
Abstract:Single-photon avalanche diodes (SPADs) are becoming popular in time-of-flight depth-ranging due to their unique ability to capture individual photons with picosecond timing resolution. However, ambient light (e.g., sunlight) incident on a SPAD-based 3D camera leads to severe non-linear distortions (pileup) in the measured waveform, resulting in large depth errors. We propose asynchronous single-photon 3D imaging, a family of acquisition schemes to mitigate pileup during data acquisition itself. Asynchronous acquisition temporally misaligns SPAD measurement windows and the laser cycles through deterministically predefined or randomized offsets. Our key insight is that pileup distortions can be "averaged out" by choosing a sequence of offsets that span the entire depth range. We develop a generalized image formation model and perform theoretical analysis to explore the space of asynchronous acquisition schemes and design high-performance schemes. Our simulations and experiments demonstrate an improvement in depth accuracy of up to an order of magnitude as compared to the state-of-the-art, across a wide range of imaging scenarios, including those with high ambient flux.
Abstract:Single photon avalanche diodes (SPADs) are starting to play a pivotal role in the development of photon-efficient, long-range LiDAR systems. However, due to non-linearities in their image formation model, a high photon flux (e.g., due to strong sunlight) leads to distortion of the incident temporal waveform, and potentially, large depth errors. Operating SPADs in low flux regimes can mitigate these distortions, but, often requires attenuating the signal and thus, results in low signal-to-noise ratio. In this paper, we address the following basic question: what is the optimal photon flux that a SPAD-based LiDAR should be operated in? We derive a closed form expression for the optimal flux, which is quasi-depth-invariant, and depends on the ambient light strength. The optimal flux is lower than what a SPAD typically measures in real world scenarios, but surprisingly, considerably higher than what is conventionally suggested for avoiding distortions. We propose a simple, adaptive approach for achieving the optimal flux by attenuating incident flux based on an estimate of ambient light strength. Using extensive simulations and a hardware prototype, we show that the optimal flux criterion holds for several depth estimators, under a wide range of illumination conditions.
Abstract:Insufficient training data and severe class imbalance are often limiting factors when developing machine learning models for the classification of rare diseases. In this work, we address the problem of classifying bone lesions from X-ray images by increasing the small number of positive samples in the training set. We propose a generative data augmentation approach based on a cycle-consistent generative adversarial network that synthesizes bone lesions on images without pathology. We pose the generative task as an image-patch translation problem that we optimize specifically for distinct bones (humerus, tibia, femur). In experimental results, we confirm that the described method mitigates the class imbalance problem in the binary classification task of bone lesion detection. We show that the augmented training sets enable the training of superior classifiers achieving better performance on a held-out test set. Additionally, we demonstrate the feasibility of transfer learning and apply a generative model that was trained on one body part to another.
Abstract:We consider a variant of the problem of best arm identification in multi-arm bandits, where in each round, multiple arms are played in an ordered fashion until a nonzero reward is obtained. Since each round potentially provides information about more than one arm, the sample complexity can be much lower than in the standard formulation. We introduce a subroutine to perform uniform sampling, that allows us to adapt certain optimal algorithms for the standard version to this variant. As we prove, much of the analysis goes through as well.
Abstract:There has been remarkable recent work in unpaired image-to-image translation. However, they're restricted to translation on single pairs of distributions, with some exceptions. In this study, we extend one of these works to a scalable multidistribution translation mechanism. Our translation models not only converts from one distribution to another but can be stacked to create composite translation functions. We show that this composite property makes it possible to generate images with characteristics not seen in the training set. We also propose a decoupled training mechanism to train multiple distributions separately, which we show, generates better samples than isolated joint training. Further, we do a qualitative and quantitative analysis to assess the plausibility of the samples. The code is made available at https://github.com/lgraesser/im2im2im.