Abstract:Single-domain generalization aims to learn a model from single source domain data to achieve generalized performance on other unseen target domains. Existing works primarily focus on improving the generalization ability of static networks. However, static networks are unable to dynamically adapt to the diverse variations in different image scenes, leading to limited generalization capability. Different scenes exhibit varying levels of complexity, and the complexity of images further varies significantly in cross-domain scenarios. In this paper, we propose a dynamic object-centric perception network based on prompt learning, aiming to adapt to the variations in image complexity. Specifically, we propose an object-centric gating module based on prompt learning to focus attention on the object-centric features guided by the various scene prompts. Then, with the object-centric gating masks, the dynamic selective module dynamically selects highly correlated feature regions in both spatial and channel dimensions enabling the model to adaptively perceive object-centric relevant features, thereby enhancing the generalization capability. Extensive experiments were conducted on single-domain generalization tasks in image classification and object detection. The experimental results demonstrate that our approach outperforms state-of-the-art methods, which validates the effectiveness and generally of our proposed method.
Abstract:The scene graph generation (SGG) task is designed to identify the predicates based on the subject-object pairs.However,existing datasets generally include two imbalance cases: one is the class imbalance from the predicted predicates and another is the context imbalance from the given subject-object pairs, which presents significant challenges for SGG. Most existing methods focus on the imbalance of the predicted predicate while ignoring the imbalance of the subject-object pairs, which could not achieve satisfactory results. To address the two imbalance cases, we propose a novel Environment Invariant Curriculum Relation learning (EICR) method, which can be applied in a plug-and-play fashion to existing SGG methods. Concretely, to remove the imbalance of the subject-object pairs, we first construct different distribution environments for the subject-object pairs and learn a model invariant to the environment changes. Then, we construct a class-balanced curriculum learning strategy to balance the different environments to remove the predicate imbalance. Comprehensive experiments conducted on VG and GQA datasets demonstrate that our EICR framework can be taken as a general strategy for various SGG models, and achieve significant improvements.
Abstract:Recently, large-scale pre-trained models have shown their advantages in many tasks. However, due to the huge computational complexity and storage requirements, it is challenging to apply the large-scale model to real scenes. A common solution is knowledge distillation which regards the large-scale model as a teacher model and helps to train a small student model to obtain a competitive performance. Cross-task Knowledge distillation expands the application scenarios of the large-scale pre-trained model. Existing knowledge distillation works focus on directly mimicking the final prediction or the intermediate layers of the teacher model, which represent the global-level characteristics and are task-specific. To alleviate the constraint of different label spaces, capturing invariant intrinsic local object characteristics (such as the shape characteristics of the leg and tail of the cattle and horse) plays a key role. Considering the complexity and variability of real scene tasks, we propose a Prototype-guided Cross-task Knowledge Distillation (ProC-KD) approach to transfer the intrinsic local-level object knowledge of a large-scale teacher network to various task scenarios. First, to better transfer the generalized knowledge in the teacher model in cross-task scenarios, we propose a prototype learning module to learn from the essential feature representation of objects in the teacher model. Secondly, for diverse downstream tasks, we propose a task-adaptive feature augmentation module to enhance the features of the student model with the learned generalization prototype features and guide the training of the student model to improve its generalization ability. The experimental results on various visual tasks demonstrate the effectiveness of our approach for large-scale model cross-task knowledge distillation scenes.
Abstract:To improve the generalization of detectors, for domain adaptive object detection (DAOD), recent advances mainly explore aligning feature-level distributions between the source and single-target domain, which may neglect the impact of domain-specific information existing in the aligned features. Towards DAOD, it is important to extract domain-invariant object representations. To this end, in this paper, we try to disentangle domain-invariant representations from domain-specific representations. And we propose a novel disentangled method based on vector decomposition. Firstly, an extractor is devised to separate domain-invariant representations from the input, which are used for extracting object proposals. Secondly, domain-specific representations are introduced as the differences between the input and domain-invariant representations. Through the difference operation, the gap between the domain-specific and domain-invariant representations is enlarged, which promotes domain-invariant representations to contain more domain-irrelevant information. In the experiment, we separately evaluate our method on the single- and compound-target case. For the single-target case, experimental results of four domain-shift scenes show our method obtains a significant performance gain over baseline methods. Moreover, for the compound-target case (i.e., the target is a compound of two different domains without domain labels), our method outperforms baseline methods by around 4%, which demonstrates the effectiveness of our method.
Abstract:Zero-Shot Sketch-Based Image Retrieval (ZS-SBIR) is a novel cross-modal retrieval task, where abstract sketches are used as queries to retrieve natural images under zero-shot scenario. Most existing methods regard ZS-SBIR as a traditional classification problem and employ a cross-entropy or triplet-based loss to achieve retrieval, which neglect the problems of the domain gap between sketches and natural images and the large intra-class diversity in sketches. Toward this end, we propose a novel Domain-Smoothing Network (DSN) for ZS-SBIR. Specifically, a cross-modal contrastive method is proposed to learn generalized representations to smooth the domain gap by mining relations with additional augmented samples. Furthermore, a category-specific memory bank with sketch features is explored to reduce intra-class diversity in the sketch domain. Extensive experiments demonstrate that our approach notably outperforms the state-of-the-art methods in both Sketchy and TU-Berlin datasets. Our source code is publicly available at https://github.com/haowang1992/DSN.
Abstract:Few-shot object detection (FSOD) aims to strengthen the performance of novel object detection with few labeled samples. To alleviate the constraint of few samples, enhancing the generalization ability of learned features for novel objects plays a key role. Thus, the feature learning process of FSOD should focus more on intrinsical object characteristics, which are invariant under different visual changes and therefore are helpful for feature generalization. Unlike previous attempts of the meta-learning paradigm, in this paper, we explore how to smooth object features with intrinsical characteristics that are universal across different object categories. We propose a new prototype, namely universal prototype, that is learned from all object categories. Besides the advantage of characterizing invariant characteristics, the universal prototypes alleviate the impact of unbalanced object categories. After augmenting object features with the universal prototypes, we impose a consistency loss to maximize the agreement between the augmented features and the original one, which is beneficial for learning invariant object characteristics. Thus, we develop a new framework of few-shot object detection with universal prototypes (${FSOD}^{up}$) that owns the merit of feature generalization towards novel objects. Experimental results on PASCAL VOC and MS COCO demonstrate the effectiveness of ${FSOD}^{up}$. Particularly, for the 1-shot case of VOC Split2, ${FSOD}^{up}$ outperforms the baseline by 6.8\% in terms of mAP. Moreover, we further verify ${FSOD}^{up}$ on a long-tail detection dataset, i.e., LVIS. And employing ${FSOD}^{up}$ outperforms the state-of-the-art method.
Abstract:Recent advances of video captioning often employ a recurrent neural network (RNN) as the decoder. However, RNN is prone to diluting long-term information. Recent works have demonstrated memory network (MemNet) has the advantage of storing long-term information. However, as the decoder, it has not been well exploited for video captioning. The reason partially comes from the difficulty of sequence decoding with MemNet. Instead of the common practice, i.e., sequence decoding with RNN, in this paper, we devise a novel memory decoder for video captioning. Concretely, after obtaining representation of each frame through a pre-trained network, we first fuse the visual and lexical information. Then, at each time step, we construct a multi-layer MemNet-based decoder, i.e., in each layer, we employ a memory set to store previous information and an attention mechanism to select the information related to the current input. Thus, this decoder avoids the dilution of long-term information. And the multi-layer architecture is helpful for capturing dependencies between frames and word sequences. Experimental results show that even without the encoding network, our decoder still could obtain competitive performance and outperform the performance of RNN decoder. Furthermore, compared with one-layer RNN decoder, our decoder has fewer parameters.
Abstract:Most state-of-the-art methods of object detection suffer from poor generalization ability when the training and test data are from different domains, e.g., with different styles. To address this problem, previous methods mainly use holistic representations to align feature-level and pixel-level distributions of different domains, which may neglect the instance-level characteristics of objects in images. Besides, when transferring detection ability across different domains, it is important to obtain the instance-level features that are domain-invariant, instead of the styles that are domain-specific. Therefore, in order to extract instance-invariant features, we should disentangle the domain-invariant features from the domain-specific features. To this end, a progressive disentangled framework is first proposed to solve domain adaptive object detection. Particularly, base on disentangled learning used for feature decomposition, we devise two disentangled layers to decompose domain-invariant and domain-specific features. And the instance-invariant features are extracted based on the domain-invariant features. Finally, to enhance the disentanglement, a three-stage training mechanism including multiple loss functions is devised to optimize our model. In the experiment, we verify the effectiveness of our method on three domain-shift scenes. Our method is separately 2.3\%, 3.6\%, and 4.0\% higher than the baseline method \cite{saito2019strong}.