Recently, a task of Single-Domain Generalized Object Detection (Single-DGOD) is proposed, aiming to generalize a detector to multiple unknown domains never seen before during training. Due to the unavailability of target-domain data, some methods leverage the multimodal capabilities of vision-language models, using textual prompts to estimate cross-domain information, enhancing the model's generalization capability. These methods typically use a single textual prompt, often referred to as the one-step prompt method. However, when dealing with complex styles such as the combination of rain and night, we observe that the performance of the one-step prompt method tends to be relatively weak. The reason may be that many scenes incorporate not just a single style but a combination of multiple styles. The one-step prompt method may not effectively synthesize combined information involving various styles. To address this limitation, we propose a new method, i.e., Style Evolving along Chain-of-Thought, which aims to progressively integrate and expand style information along the chain of thought, enabling the continual evolution of styles. Specifically, by progressively refining style descriptions and guiding the diverse evolution of styles, this approach enables more accurate simulation of various style characteristics and helps the model gradually learn and adapt to subtle differences between styles. Additionally, it exposes the model to a broader range of style features with different data distributions, thereby enhancing its generalization capability in unseen domains. The significant performance gains over five adverse-weather scenarios and the Real to Art benchmark demonstrate the superiorities of our method.