Abstract:Accurately generating images of human bodies from text remains a challenging problem for state of the art text-to-image models. Commonly observed body-related artifacts include extra or missing limbs, unrealistic poses, blurred body parts, etc. Currently, evaluation of such artifacts relies heavily on time-consuming human judgments, limiting the ability to benchmark models at scale. We address this by proposing BodyMetric, a learnable metric that predicts body realism in images. BodyMetric is trained on realism labels and multi-modal signals including 3D body representations inferred from the input image, and textual descriptions. In order to facilitate this approach, we design an annotation pipeline to collect expert ratings on human body realism leading to a new dataset for this task, namely, BodyRealism. Ablation studies support our architectural choices for BodyMetric and the importance of leveraging a 3D human body prior in capturing body-related artifacts in 2D images. In comparison to concurrent metrics which evaluate general user preference in images, BodyMetric specifically reflects body-related artifacts. We demonstrate the utility of BodyMetric through applications that were previously infeasible at scale. In particular, we use BodyMetric to benchmark the generation ability of text-to-image models to produce realistic human bodies. We also demonstrate the effectiveness of BodyMetric in ranking generated images based on the predicted realism scores.
Abstract:Accurately generating images of human bodies from text remains a challenging problem for state of the art text-to-image models. Commonly observed body-related artifacts include extra or missing limbs, unrealistic poses, blurred body parts, etc. Currently, evaluation of such artifacts relies heavily on time-consuming human judgments, limiting the ability to benchmark models at scale. We address this by proposing BodyMetric, a learnable metric that predicts body realism in images. BodyMetric is trained on realism labels and multi-modal signals including 3D body representations inferred from the input image, and textual descriptions. In order to facilitate this approach, we design an annotation pipeline to collect expert ratings on human body realism leading to a new dataset for this task, namely, BodyRealism. Ablation studies support our architectural choices for BodyMetric and the importance of leveraging a 3D human body prior in capturing body-related artifacts in 2D images. In comparison to concurrent metrics which evaluate general user preference in images, BodyMetric specifically reflects body-related artifacts. We demonstrate the utility of BodyMetric through applications that were previously infeasible at scale. In particular, we use BodyMetric to benchmark the generation ability of text-to-image models to produce realistic human bodies. We also demonstrate the effectiveness of BodyMetric in ranking generated images based on the predicted realism scores.
Abstract:Synthesizing images of a person in novel poses from a single image is a highly ambiguous task. Most existing approaches require paired training images; i.e. images of the same person with the same clothing in different poses. However, obtaining sufficiently large datasets with paired data is challenging and costly. Previous methods that forego paired supervision lack realism. We propose a self-supervised framework named SPICE (Self-supervised Person Image CrEation) that closes the image quality gap with supervised methods. The key insight enabling self-supervision is to exploit 3D information about the human body in several ways. First, the 3D body shape must remain unchanged when reposing. Second, representing body pose in 3D enables reasoning about self occlusions. Third, 3D body parts that are visible before and after reposing, should have similar appearance features. Once trained, SPICE takes an image of a person and generates a new image of that person in a new target pose. SPICE achieves state-of-the-art performance on the DeepFashion dataset, improving the FID score from 29.9 to 7.8 compared with previous unsupervised methods, and with performance similar to the state-of-the-art supervised method (6.4). SPICE also generates temporally coherent videos given an input image and a sequence of poses, despite being trained on static images only.