Abstract:This paper presents an in-depth investigation of the effectiveness of dependency-based syntactic features on the irony detection task in a multilingual perspective (English, Spanish, French and Italian). It focuses on the contribution from syntactic knowledge, exploiting linguistic resources where syntax is annotated according to the Universal Dependencies scheme. Three distinct experimental settings are provided. In the first, a variety of syntactic dependency-based features combined with classical machine learning classifiers are explored. In the second scenario, two well-known types of word embeddings are trained on parsed data and tested against gold standard datasets. In the third setting, dependency-based syntactic features are combined into the Multilingual BERT architecture. The results suggest that fine-grained dependency-based syntactic information is informative for the detection of irony.
Abstract:This article presents a discussion on the main linguistic phenomena which cause difficulties in the analysis of user-generated texts found on the web and in social media, and proposes a set of annotation guidelines for their treatment within the Universal Dependencies (UD) framework of syntactic analysis. Given on the one hand the increasing number of treebanks featuring user-generated content, and its somewhat inconsistent treatment in these resources on the other, the aim of this article is twofold: (1) to provide a condensed, though comprehensive, overview of such treebanks -- based on available literature -- along with their main features and a comparative analysis of their annotation criteria, and (2) to propose a set of tentative UD-based annotation guidelines, to promote consistent treatment of the particular phenomena found in these types of texts. The overarching goal of this article is to provide a common framework for researchers interested in developing similar resources in UD, thus promoting cross-linguistic consistency, which is a principle that has always been central to the spirit of UD.