Abstract:This paper investigates the use of first person plural pronouns as a rhetorical device in political speeches. We present an annotation schema for disambiguating pronoun references and use our schema to create an annotated corpus of debates from the German Bundestag. We then use our corpus to learn to automatically resolve pronoun referents in parliamentary debates. We explore the use of data augmentation with weak supervision to further expand our corpus and report preliminary results.
Abstract:This article presents a discussion on the main linguistic phenomena which cause difficulties in the analysis of user-generated texts found on the web and in social media, and proposes a set of annotation guidelines for their treatment within the Universal Dependencies (UD) framework of syntactic analysis. Given on the one hand the increasing number of treebanks featuring user-generated content, and its somewhat inconsistent treatment in these resources on the other, the aim of this article is twofold: (1) to provide a condensed, though comprehensive, overview of such treebanks -- based on available literature -- along with their main features and a comparative analysis of their annotation criteria, and (2) to propose a set of tentative UD-based annotation guidelines, to promote consistent treatment of the particular phenomena found in these types of texts. The overarching goal of this article is to provide a common framework for researchers interested in developing similar resources in UD, thus promoting cross-linguistic consistency, which is a principle that has always been central to the spirit of UD.