Abstract:Seamless integration of artificial intelligence (AI) and machine learning (ML) techniques with wireless systems is a crucial step for 6G AInization. However, such integration faces challenges in terms of model functionality and lifecycle management. ML operations (MLOps) offer a systematic approach to tackle these challenges. Existing approaches toward implementing MLOps in a centralized platform often overlook the challenges posed by diverse learning paradigms and network heterogeneity. This article provides a new approach to MLOps targeting the intricacies of future wireless networks. Considering unique aspects of the future radio access network (RAN), we formulate three operational pipelines, namely reinforcement learning operations (RLOps), federated learning operations (FedOps), and generative AI operations (GenOps). These pipelines form the foundation for seamlessly integrating various learning/inference capabilities into networks. We outline the specific challenges and proposed solutions for each operation, facilitating large-scale deployment of AI-Native 6G networks.
Abstract:This paper presents Federated Learning with Adaptive Monitoring and Elimination (FLAME), a novel solution capable of detecting and mitigating concept drift in Federated Learning (FL) Internet of Things (IoT) environments. Concept drift poses significant challenges for FL models deployed in dynamic and real-world settings. FLAME leverages an FL architecture, considers a real-world FL pipeline, and proves capable of maintaining model performance and accuracy while addressing bandwidth and privacy constraints. Introducing various features and extensions on previous works, FLAME offers a robust solution to concept drift, significantly reducing computational load and communication overhead. Compared to well-known lightweight mitigation methods, FLAME demonstrates superior performance in maintaining high F1 scores and reducing resource utilisation in large-scale IoT deployments, making it a promising approach for real-world applications.
Abstract:Federated Learning (FL) is a distributed machine learning approach that enables training on decentralized data while preserving privacy. However, FL systems often involve resource-constrained client devices with limited computational power, memory, storage, and bandwidth. This paper introduces FedMap, a novel method that aims to enhance the communication efficiency of FL deployments by collaboratively learning an increasingly sparse global model through iterative, unstructured pruning. Importantly, FedMap trains a global model from scratch, unlike other methods reported in the literature, making it ideal for privacy-critical use cases such as in the medical and finance domains, where suitable pre-training data is often limited. FedMap adapts iterative magnitude-based pruning to the FL setting, ensuring all clients prune and refine the same subset of the global model parameters, therefore gradually reducing the global model size and communication overhead. The iterative nature of FedMap, forming subsequent models as subsets of predecessors, avoids parameter reactivation issues seen in prior work, resulting in stable performance. In this paper we provide an extensive evaluation of FedMap across diverse settings, datasets, model architectures, and hyperparameters, assessing performance in both IID and non-IID environments. Comparative analysis against the baseline approach demonstrates FedMap's ability to achieve more stable client model performance. For IID scenarios, FedMap achieves over $90$\% pruning without significant performance degradation. In non-IID settings, it achieves at least $~80$\% pruning while maintaining accuracy. FedMap offers a promising solution to alleviate communication bottlenecks in FL systems while retaining model accuracy.
Abstract:Machine learning (ML) has seen tremendous advancements, but its environmental footprint remains a concern. Acknowledging the growing environmental impact of ML this paper investigates Green ML, examining various model architectures and hyperparameters in both training and inference phases to identify energy-efficient practices. Our study leverages software-based power measurements for ease of replication across diverse configurations, models and datasets. In this paper, we examine multiple models and hardware configurations to identify correlations across the various measurements and metrics and key contributors to energy reduction. Our analysis offers practical guidelines for constructing sustainable ML operations, emphasising energy consumption and carbon footprint reductions while maintaining performance. As identified, short-lived profiling can quantify the long-term expected energy consumption. Moreover, model parameters can also be used to accurately estimate the expected total energy without the need for extensive experimentation.
Abstract:With the ever-increasing reliance on digital networks for various aspects of modern life, ensuring their security has become a critical challenge. Intrusion Detection Systems play a crucial role in ensuring network security, actively identifying and mitigating malicious behaviours. However, the relentless advancement of cyber-threats has rendered traditional/classical approaches insufficient in addressing the sophistication and complexity of attacks. This paper proposes a novel 3-stage intrusion detection system inspired by a simplified version of the Lockheed Martin cyber kill chain to detect advanced multi-step attacks. The proposed approach consists of three models, each responsible for detecting a group of attacks with common characteristics. The detection outcome of the first two stages is used to conduct a feasibility study on the possibility of predicting attacks in the third stage. Using the ToN IoT dataset, we achieved an average of 94% F1-Score among different stages, outperforming the benchmark approaches based on Random-forest model. Finally, we comment on the feasibility of this approach to be integrated in a real-world system and propose various possible future work.
Abstract:Federated learning (FL) systems face performance challenges in dealing with heterogeneous devices and non-identically distributed data across clients. We propose a dynamic global model aggregation method within Asynchronous Federated Learning (AFL) deployments to address these issues. Our aggregation method scores and adjusts the weighting of client model updates based on their upload frequency to accommodate differences in device capabilities. Additionally, we also immediately provide an updated global model to clients after they upload their local models to reduce idle time and improve training efficiency. We evaluate our approach within an AFL deployment consisting of 10 simulated clients with heterogeneous compute constraints and non-IID data. The simulation results, using the FashionMNIST dataset, demonstrate over 10% and 19% improvement in global model accuracy compared to state-of-the-art methods PAPAYA and FedAsync, respectively. Our dynamic aggregation method allows reliable global model training despite limiting client resources and statistical data heterogeneity. This improves robustness and scalability for real-world FL deployments.
Abstract:UMBRELLA is a large-scale, open-access Internet of Things (IoT) ecosystem incorporating over 200 multi-sensor multi-wireless nodes, 20 collaborative robots, and edge-intelligence-enabled devices. This paper provides a guide to the implemented and prospective artificial intelligence (AI) capabilities of UMBRELLA in real-world IoT systems. Four existing UMBRELLA applications are presented in detail: 1) An automated streetlight monitoring for detecting issues and triggering maintenance alerts; 2) A Digital twin of building environments providing enhanced air quality sensing with reduced cost; 3) A large-scale Federated Learning framework for reducing communication overhead; and 4) An intrusion detection for containerised applications identifying malicious activities. Additionally, the potential of UMBRELLA is outlined for future smart city and multi-robot crowdsensing applications enhanced by semantic communications and multi-agent planning. Finally, to realise the above use-cases we discuss the need for a tailored MLOps platform to automate UMBRELLA model pipelines and establish trust.
Abstract:The Open Radio Access Network (O-RAN) is a burgeoning market with projected growth in the upcoming years. RAN has the highest CAPEX impact on the network and, most importantly, consumes 73% of its total energy. That makes it an ideal target for optimisation through the integration of Machine Learning (ML). However, the energy consumption of ML is frequently overlooked in such ecosystems. Our work addresses this critical aspect by presenting FROST - Flexible Reconfiguration method with Online System Tuning - a solution for energy-aware ML pipelines that adhere to O-RAN's specifications and principles. FROST is capable of profiling the energy consumption of an ML pipeline and optimising the hardware accordingly, thereby limiting the power draw. Our findings indicate that FROST can achieve energy savings of up to 26.4% without compromising the model's accuracy or introducing significant time delays.
Abstract:The vast increase of IoT technologies and the ever-evolving attack vectors and threat actors have increased cyber-security risks dramatically. Novel attacks can compromise IoT devices to gain access to sensitive data or control them to deploy further malicious activities. The detection of novel attacks often relies upon AI solutions. A common approach to implementing AI-based IDS in distributed IoT systems is in a centralised manner. However, this approach may violate data privacy and secrecy. In addition, centralised data collection prohibits the scale-up of IDSs. Therefore, intrusion detection solutions in IoT ecosystems need to move towards a decentralised direction. FL has attracted significant interest in recent years due to its ability to perform collaborative learning while preserving data confidentiality and locality. Nevertheless, most FL-based IDS for IoT systems are designed under unrealistic data distribution conditions. To that end, we design an experiment representative of the real world and evaluate the performance of two FL IDS implementations, one based on DNNs and another on our previous work on DBNs. For our experiments, we rely on TON-IoT, a realistic IoT network traffic dataset, associating each IP address with a single FL client. Additionally, we explore pre-training and investigate various aggregation methods to mitigate the impact of data heterogeneity. Lastly, we benchmark our approach against a centralised solution. The comparison shows that the heterogeneous nature of the data has a considerable negative impact on the model performance when trained in a distributed manner. However, in the case of a pre-trained initial global FL model, we demonstrate a performance improvement of over 20% (F1-score) when compared against a randomly initiated global model.
Abstract:Intelligent, large-scale IoT ecosystems have become possible due to recent advancements in sensing technologies, distributed learning, and low-power inference in embedded devices. In traditional cloud-centric approaches, raw data is transmitted to a central server for training and inference purposes. On the other hand, Federated Learning migrates both tasks closer to the edge nodes and endpoints. This allows for a significant reduction in data exchange while preserving the privacy of users. Trained models, though, may under-perform in dynamic environments due to changes in the data distribution, affecting the model's ability to infer accurately; this is referred to as concept drift. Such drift may also be adversarial in nature. Therefore, it is of paramount importance to detect such behaviours promptly. In order to simultaneously reduce communication traffic and maintain the integrity of inference models, we introduce FLARE, a novel lightweight dual-scheduler FL framework that conditionally transfers training data, and deploys models between edge and sensor endpoints based on observing the model's training behaviour and inference statistics, respectively. We show that FLARE can significantly reduce the amount of data exchanged between edge and sensor nodes compared to fixed-interval scheduling methods (over 5x reduction), is easily scalable to larger systems, and can successfully detect concept drift reactively with at least a 16x reduction in latency.