Abstract:Pre-emphasis filtering, compensating for the natural energy decay of speech at higher frequencies, has been considered as a common pre-processing step in a number of speech processing tasks over the years. In this work, we demonstrate, for the first time, that pre-emphasis filtering may also be used as a simple and computationally-inexpensive way to leverage deep neural network-based speech enhancement performance. Particularly, we look into pre-emphasizing the estimated and actual clean speech prior to loss calculation so that different speech frequency components better mirror their perceptual importance during the training phase. Experimental results on a noisy version of the TIMIT dataset show that integrating the pre-emphasis-based methodology at hand yields relative estimated speech quality improvements of up to 4.6% and 3.4% for noise types seen and unseen, respectively, during the training phase. Similar to the case of pre-emphasis being considered as a default pre-processing step in classical automatic speech recognition and speech coding systems, the pre-emphasis-based methodology analyzed in this article may potentially become a default add-on for modern speech enhancement.
Abstract:We propose conditioning field initialization for neural network based topology optimization. In this work, we focus on (1) improving upon existing neural network based topology optimization, (2) demonstrating that by using a prior initial field on the unoptimized domain, the efficiency of neural network based topology optimization can be further improved. Our approach consists of a topology neural network that is trained on a case by case basis to represent the geometry for a single topology optimization problem. It takes in domain coordinates as input to represent the density at each coordinate where the topology is represented by a continuous density field. The displacement is solved through a finite element solver. We employ the strain energy field calculated on the initial design domain as an additional conditioning field input to the neural network throughout the optimization. The addition of the strain energy field input improves the convergence speed compared to standalone neural network based topology optimization.
Abstract:We propose a direct mesh-free method for performing topology optimization by integrating a density field approximation neural network with a displacement field approximation neural network. We show that this direct integration approach can give comparable results to conventional topology optimization techniques, with an added advantage of enabling seamless integration with post-processing software, and a potential of topology optimization with objectives where meshing and Finite Element Analysis (FEA) may be expensive or not suitable. Our approach (DMF-TONN) takes in as inputs the boundary conditions and domain coordinates and finds the optimum density field for minimizing the loss function of compliance and volume fraction constraint violation. The mesh-free nature is enabled by a physics-informed displacement field approximation neural network to solve the linear elasticity partial differential equation and replace the FEA conventionally used for calculating the compliance. We show that using a suitable Fourier Features neural network architecture and hyperparameters, the density field approximation neural network can learn the weights to represent the optimal density field for the given domain and boundary conditions, by directly backpropagating the loss gradient through the displacement field approximation neural network, and unlike prior work there is no requirement of a sensitivity filter, optimality criterion method, or a separate training of density network in each topology optimization iteration.
Abstract:The Fearless Steps Challenge 2019 Phase-1 (FSC-P1) is the inaugural Challenge of the Fearless Steps Initiative hosted by the Center for Robust Speech Systems (CRSS) at the University of Texas at Dallas. The goal of this Challenge is to evaluate the performance of state-of-the-art speech and language systems for large task-oriented teams with naturalistic audio in challenging environments. Researchers may select to participate in any single or multiple of these challenge tasks. Researchers may also choose to employ the FEARLESS STEPS corpus for other related speech applications. All participants are encouraged to submit their solutions and results for consideration in the ISCA INTERSPEECH-2019 special session.
Abstract:We propose a neural network-based approach to topology optimization that aims to reduce the use of support structures in additive manufacturing. Our approach uses a network architecture that allows the simultaneous determination of an optimized: (1) part segmentation, (2) the topology of each part, and (3) the build direction of each part that collectively minimize the amount of support structure. Through training, the network learns a material density and segment classification in the continuous 3D space. Given a problem domain with prescribed load and displacement boundary conditions, the neural network takes as input 3D coordinates of the voxelized domain as training samples and outputs a continuous density field. Since the neural network for topology optimization learns the density distribution field, analytical solutions to the density gradient can be obtained from the input-output relationship of the neural network. We demonstrate our approach on several compliance minimization problems with volume fraction constraints, where support volume minimization is added as an additional criterion to the objective function. We show that simultaneous optimization of part segmentation along with the topology and print angle optimization further reduces the support structure, compared to a combined print angle and topology optimization without segmentation.
Abstract:This work extends the analysis of the theoretical results presented within the paper Is Q-Learning Provably Efficient? by Jin et al. We include a survey of related research to contextualize the need for strengthening the theoretical guarantees related to perhaps the most important threads of model-free reinforcement learning. We also expound upon the reasoning used in the proofs to highlight the critical steps leading to the main result showing that Q-learning with UCB exploration achieves a sample efficiency that matches the optimal regret that can be achieved by any model-based approach.