Pre-emphasis filtering, compensating for the natural energy decay of speech at higher frequencies, has been considered as a common pre-processing step in a number of speech processing tasks over the years. In this work, we demonstrate, for the first time, that pre-emphasis filtering may also be used as a simple and computationally-inexpensive way to leverage deep neural network-based speech enhancement performance. Particularly, we look into pre-emphasizing the estimated and actual clean speech prior to loss calculation so that different speech frequency components better mirror their perceptual importance during the training phase. Experimental results on a noisy version of the TIMIT dataset show that integrating the pre-emphasis-based methodology at hand yields relative estimated speech quality improvements of up to 4.6% and 3.4% for noise types seen and unseen, respectively, during the training phase. Similar to the case of pre-emphasis being considered as a default pre-processing step in classical automatic speech recognition and speech coding systems, the pre-emphasis-based methodology analyzed in this article may potentially become a default add-on for modern speech enhancement.