Abstract:In this letter, we present a new robotic harvester (Harvey) that can autonomously harvest sweet pepper in protected cropping environments. Our approach combines effective vision algorithms with a novel end-effector design to enable successful harvesting of sweet peppers. Initial field trials in protected cropping environments, with two cultivar, demonstrate the efficacy of this approach achieving a 46% success rate for unmodified crop, and 58% for modified crop. Furthermore, for the more favourable cultivar we were also able to detach 90% of sweet peppers, indicating that improvements in the grasping success rate would result in greatly improved harvesting performance.
Abstract:We propose to learn tasks directly from visual demonstrations by learning to predict the outcome of human and robot actions on an environment. We enable a robot to physically perform a human demonstrated task without knowledge of the thought processes or actions of the human, only their visually observable state transitions. We evaluate our approach on two table-top, object manipulation tasks and demonstrate generalisation to previously unseen states. Our approach reduces the priors required to implement a robot task learning system compared with the existing approaches of Learning from Demonstration, Reinforcement Learning and Inverse Reinforcement Learning.