Abstract:With generative AI advances, the exciting potential for autonomous agents to manage daily tasks via natural language commands has emerged. However, cur rent agents are primarily created and tested in simplified synthetic environments, substantially limiting real-world scenario representation. In this paper, we build an environment for agent command and control that is highly realistic and reproducible. Specifically, we focus on agents that perform tasks on websites, and we create an environment with fully functional websites from four common domains: e-commerce, social forum discussions, collaborative software development, and content management. Our environment is enriched with tools (e.g., a map) and external knowledge bases (e.g., user manuals) to encourage human-like task-solving. Building upon our environment, we release a set of benchmark tasks focusing on evaluating the functional correctness of task completions. The tasks in our benchmark are diverse, long-horizon, and are designed to emulate tasks that humans routinely perform on the internet. We design and implement several autonomous agents, integrating recent techniques such as reasoning before acting. The results demonstrate that solving complex tasks is challenging: our best GPT-4-based agent only achieves an end-to-end task success rate of 10.59%. These results highlight the need for further development of robust agents, that current state-of-the-art LMs are far from perfect performance in these real-life tasks, and that WebArena can be used to measure such progress. Our code, data, environment reproduction resources, and video demonstrations are publicly available at https://webarena.dev/.
Abstract:In this project we attempt to make slot-based models with an image reconstruction objective competitive with those that use a feature reconstruction objective on real world datasets. We propose a loss-based approach to constricting the bottleneck of slot-based models, allowing larger-capacity encoder networks to be used with Slot Attention without producing degenerate stripe-shaped masks. We find that our proposed method offers an improvement over the baseline Slot Attention model but does not reach the performance of \dinosaur on the COCO2017 dataset. Throughout this project, we confirm the superiority of a feature reconstruction objective over an image reconstruction objective and explore the role of the architectural bottleneck in slot-based models.
Abstract:Deep generative models for Natural Language data offer a new angle on the problem of graph synthesis: by optimizing differentiable models that directly generate graphs, it is possible to side-step expensive search procedures in the discrete and vast space of possible graphs. We introduce LIC-GAN, an implicit, likelihood-free generative model for small graphs that circumvents the need for expensive graph matching procedures. Our method takes as input a natural language query and using a combination of language modelling and Generative Adversarial Networks (GANs) and returns a graph that closely matches the description of the query. We combine our approach with a reward network to further enhance the graph generation with desired properties. Our experiments, show that LIC-GAN does well on metrics such as PropMatch and Closeness getting scores of 0.36 and 0.48. We also show that LIC-GAN performs as good as ChatGPT, with ChatGPT getting scores of 0.40 and 0.42. We also conduct a few experiments to demonstrate the robustness of our method, while also highlighting a few interesting caveats of the model.
Abstract:Large language models (LLMs) struggle on processing complicated observations in interactive decision making. To alleviate this issue, we propose a simple hierarchical prompting approach. Diverging from previous prompting approaches that always put the \emph{full} observation~(\eg a web page) to the prompt, we propose to first construct an action-aware observation which is more \emph{condensed} and \emph{relevant} with a dedicated \summ prompt. The \actor prompt then predicts the next action based on the summarized history. While our method has broad applicability, we particularly demonstrate its efficacy in the complex domain of web navigation where a full observation often contains redundant and irrelevant information. Our approach outperforms the previous state-of-the-art prompting mechanism with the same LLM by 6.2\% on task success rate, demonstrating its potential on interactive decision making tasks with long observation traces.