Abstract:The Gromov Wasserstein (GW) problem, a variant of the classical optimal transport (OT) problem, has attracted growing interest in the machine learning and data science communities due to its ability to quantify similarity between measures in different metric spaces. However, like the classical OT problem, GW imposes an equal mass constraint between measures, which restricts its application in many machine learning tasks. To address this limitation, the partial Gromov-Wasserstein (PGW) problem has been introduced, which relaxes the equal mass constraint, enabling the comparison of general positive Radon measures. Despite this, both GW and PGW face significant computational challenges due to their non-convex nature. To overcome these challenges, we propose the linear partial Gromov-Wasserstein (LPGW) embedding, a linearized embedding technique for the PGW problem. For $K$ different metric measure spaces, the pairwise computation of the PGW distance requires solving the PGW problem $\mathcal{O}(K^2)$ times. In contrast, the proposed linearization technique reduces this to $\mathcal{O}(K)$ times. Similar to the linearization technique for the classical OT problem, we prove that LPGW defines a valid metric for metric measure spaces. Finally, we demonstrate the effectiveness of LPGW in practical applications such as shape retrieval and learning with transport-based embeddings, showing that LPGW preserves the advantages of PGW in partial matching while significantly enhancing computational efficiency.
Abstract:Comparing spherical probability distributions is of great interest in various fields, including geology, medical domains, computer vision, and deep representation learning. The utility of optimal transport-based distances, such as the Wasserstein distance, for comparing probability measures has spurred active research in developing computationally efficient variations of these distances for spherical probability measures. This paper introduces a high-speed and highly parallelizable distance for comparing spherical measures using the stereographic projection and the generalized Radon transform, which we refer to as the Stereographic Spherical Sliced Wasserstein (S3W) distance. We carefully address the distance distortion caused by the stereographic projection and provide an extensive theoretical analysis of our proposed metric and its rotationally invariant variation. Finally, we evaluate the performance of the proposed metrics and compare them with recent baselines in terms of both speed and accuracy through a wide range of numerical studies, including gradient flows and self-supervised learning.
Abstract:Learning from set-structured data, such as point clouds, has gained significant attention from the community. Geometric deep learning provides a blueprint for designing effective set neural networks by incorporating permutation symmetry. Of our interest are permutation invariant networks, which are composed of a permutation equivariant backbone, permutation invariant global pooling, and regression/classification head. While existing literature has focused on improving permutation equivariant backbones, the impact of global pooling is often overlooked. In this paper, we examine the interplay between permutation equivariant backbones and permutation invariant global pooling on three benchmark point cloud classification datasets. Our findings reveal that: 1) complex pooling methods, such as transport-based or attention-based poolings, can significantly boost the performance of simple backbones, but the benefits diminish for more complex backbones, 2) even complex backbones can benefit from pooling layers in low data scenarios, 3) surprisingly, the choice of pooling layers can have a more significant impact on the model's performance than adjusting the width and depth of the backbone, and 4) pairwise combination of pooling layers can significantly improve the performance of a fixed backbone. Our comprehensive study provides insights for practitioners to design better permutation invariant set neural networks.
Abstract:A dominating set of a graph $\mathcal{G=(V, E)}$ is a subset of vertices $S\subseteq\mathcal{V}$ such that every vertex $v\in \mathcal{V} \setminus S$ outside the dominating set is adjacent to a vertex $u\in S$ within the set. The minimum dominating set problem seeks to find a dominating set of minimum cardinality and is a well-established NP-hard combinatorial optimization problem. We propose a novel learning-based heuristic approach to compute solutions for the minimum dominating set problem using graph convolutional networks. We conduct an extensive experimental evaluation of the proposed method on a combination of randomly generated graphs and real-world graph datasets. Our results indicate that the proposed learning-based approach can outperform a classical greedy approximation algorithm. Furthermore, we demonstrate the generalization capability of the graph convolutional network across datasets and its ability to scale to graphs of higher order than those on which it was trained. Finally, we utilize the proposed learning-based heuristic in an iterative greedy algorithm, achieving state-of-the-art performance in the computation of dominating sets.