Abstract:The exponential growth of astronomical datasets provides an unprecedented opportunity for humans to gain insight into the Universe. However, effectively analyzing this vast amount of data poses a significant challenge. Astronomers are turning to deep learning techniques to address this, but the methods are limited by their specific training sets, leading to considerable duplicate workloads too. Hence, as an example to present how to overcome the issue, we built a framework for general analysis of galaxy images, based on a large vision model (LVM) plus downstream tasks (DST), including galaxy morphological classification, image restoration, object detection, parameter extraction, and more. Considering the low signal-to-noise ratio of galaxy images and the imbalanced distribution of galaxy categories, we have incorporated a Human-in-the-loop (HITL) module into our large vision model, which leverages human knowledge to enhance the reliability and interpretability of processing galaxy images interactively. The proposed framework exhibits notable few-shot learning capabilities and versatile adaptability to all the abovementioned tasks on galaxy images in the DESI legacy imaging surveys. Expressly, for object detection, trained by 1000 data points, our DST upon the LVM achieves an accuracy of 96.7%, while ResNet50 plus Mask R-CNN gives an accuracy of 93.1%; for morphology classification, to obtain AUC ~0.9, LVM plus DST and HITL only requests 1/50 training sets compared to ResNet18. Expectedly, multimodal data can be integrated similarly, which opens up possibilities for conducting joint analyses with datasets spanning diverse domains in the era of multi-message astronomy.
Abstract:We prove the converse of the universal approximation theorem, i.e. a neural network (NN) encoding theorem which shows that for every stably converged NN of continuous activation functions, its weight matrix actually encodes a continuous function that approximates its training dataset to within a finite margin of error over a bounded domain. We further show that using the Eckart-Young theorem for truncated singular value decomposition of the weight matrix for every NN layer, we can illuminate the nature of the latent space manifold of the training dataset encoded and represented by every NN layer, and the geometric nature of the mathematical operations performed by each NN layer. Our results have implications for understanding how NNs break the curse of dimensionality by harnessing memory capacity for expressivity, and that the two are complementary. This Layer Matrix Decomposition (LMD) further suggests a close relationship between eigen-decomposition of NN layers and the latest advances in conceptualizations of Hopfield networks and Transformer NN models.
Abstract:The Wide-field Infrared Survey Explorer (WISE) has detected hundreds of millions of sources over the entire sky. However, classifying them reliably is a great challenge due to degeneracies in WISE multicolor space and low detection levels in its two longest-wavelength bandpasses. In this paper, the deep learning classification network, IICnet (Infrared Image Classification network), is designed to classify sources from WISE images to achieve a more accurate classification goal. IICnet shows good ability on the feature extraction of the WISE sources. Experiments demonstrates that the classification results of IICnet are superior to some other methods; it has obtained 96.2% accuracy for galaxies, 97.9% accuracy for quasars, and 96.4% accuracy for stars, and the Area Under Curve (AUC) of the IICnet classifier can reach more than 99%. In addition, the superiority of IICnet in processing infrared images has been demonstrated in the comparisons with VGG16, GoogleNet, ResNet34, MobileNet, EfficientNetV2, and RepVGG-fewer parameters and faster inference. The above proves that IICnet is an effective method to classify infrared sources.