Abstract:While the capabilities of generative foundational models have advanced rapidly in recent years, methods to prevent harmful and unsafe behaviors remain underdeveloped. Among the pressing challenges in AI safety, machine unlearning (MU) has become increasingly critical to meet upcoming safety regulations. Most existing MU approaches focus on altering the most significant parameters of the model. However, these methods often require fine-tuning substantial portions of the model, resulting in high computational costs and training instabilities, which are typically mitigated by access to the original training dataset. In this work, we address these limitations by leveraging Singular Value Decomposition (SVD) to create a compact, low-dimensional projection that enables the selective forgetting of specific data points. We propose Singular Value Decomposition for Efficient Machine Unlearning (SEMU), a novel approach designed to optimize MU in two key aspects. First, SEMU minimizes the number of model parameters that need to be modified, effectively removing unwanted knowledge while making only minimal changes to the model's weights. Second, SEMU eliminates the dependency on the original training dataset, preserving the model's previously acquired knowledge without additional data requirements. Extensive experiments demonstrate that SEMU achieves competitive performance while significantly improving efficiency in terms of both data usage and the number of modified parameters.
Abstract:Among various mathematical tools of particular interest are those that provide a common basis for researchers in different scientific fields. One of them is Jensen's inequality, which states that the expectation of a convex function is greater than or equal to the function evaluated at the expectation. The resulting difference, known as Jensen's gap, became the subject of investigation by both the statistical and machine learning communities. Among many related topics, finding lower and upper bounds on Jensen's gap (under different assumptions on the underlying function and distribution) has recently become a problem of particular interest. In our paper, we take another step in this direction by providing a novel general and mathematically rigorous technique, motivated by the recent results of Struski et al. (2023). In addition, by studying in detail the case of the logarithmic function and the log-normal distribution, we explore a method for tightly estimating the log-likelihood of generative models trained on real-world datasets. Furthermore, we present both analytical and experimental arguments in support of the superiority of our approach in comparison to existing state-of-the-art solutions, contingent upon fulfillment of the criteria set forth by theoretical studies and corresponding experiments on synthetic data.
Abstract:Understanding the decisions made by image classification networks is a critical area of research in deep learning. This task is traditionally divided into two distinct approaches: post-hoc methods and intrinsic methods. Post-hoc methods, such as GradCam, aim to interpret the decisions of pre-trained models by identifying regions of the image where the network focuses its attention. However, these methods provide only a high-level overview, making it difficult to fully understand the network's decision-making process. Conversely, intrinsic methods, like prototypical parts models, offer a more detailed understanding of network predictions but are constrained by specific architectures, training methods, and datasets. In this paper, we introduce InfoDisent, a hybrid model that combines the advantages of both approaches. By utilizing an information bottleneck, InfoDisent disentangles the information in the final layer of a pre-trained deep network, enabling the breakdown of classification decisions into basic, understandable atomic components. Unlike standard prototypical parts approaches, InfoDisent can interpret the decisions of pre-trained classification networks and be used for making classification decisions, similar to intrinsic models. We validate the effectiveness of InfoDisent on benchmark datasets such as ImageNet, CUB-200-2011, Stanford Cars, and Stanford Dogs for both convolutional and transformer backbones.
Abstract:Video processing is generally divided into two main categories: processing of the entire video, which typically yields optimal classification outcomes, and real-time processing, where the objective is to make a decision as promptly as possible. The latter is often driven by the need to identify rapidly potential critical or dangerous situations. These could include machine failure, traffic accidents, heart problems, or dangerous behavior. Although the models dedicated to the processing of entire videos are typically well-defined and clearly presented in the literature, this is not the case for online processing, where a plethora of hand-devised methods exist. To address this, we present \our{}, a novel, unified, and theoretically-based adaptation framework for dealing with the online classification problem for video data. The initial phase of our study is to establish a robust mathematical foundation for the theory of classification of sequential data, with the potential to make a decision at an early stage. This allows us to construct a natural function that encourages the model to return an outcome much faster. The subsequent phase is to demonstrate a straightforward and readily implementable method for adapting offline models to online and recurrent operations. Finally, by comparing the proposed approach to the non-online state-of-the-art baseline, it is demonstrated that the use of \our{} encourages the network to make earlier classification decisions without compromising accuracy.
Abstract:Partial Multi-label Learning (PML) is a type of weakly supervised learning where each training instance corresponds to a set of candidate labels, among which only some are true. In this paper, we introduce \our{}, a novel probabilistic approach to this problem that extends the binary cross entropy to the PML setup. In contrast to existing methods, it does not require suboptimal disambiguation and, as such, can be applied to any deep architecture. Furthermore, experiments conducted on artificial and real-world datasets indicate that \our{} outperforms existing approaches, especially for high noise in a candidate set.
Abstract:Video generation is important, especially in medicine, as much data is given in this form. However, video generation of high-resolution data is a very demanding task for generative models, due to the large need for memory. In this paper, we propose Memory Efficient Video GAN (MeVGAN) - a Generative Adversarial Network (GAN) which uses plugin-type architecture. We use a pre-trained 2D-image GAN and only add a simple neural network to construct respective trajectories in the noise space, so that the trajectory forwarded through the GAN model constructs a real-life video. We apply MeVGAN in the task of generating colonoscopy videos. Colonoscopy is an important medical procedure, especially beneficial in screening and managing colorectal cancer. However, because colonoscopy is difficult and time-consuming to learn, colonoscopy simulators are widely used in educating young colonoscopists. We show that MeVGAN can produce good quality synthetic colonoscopy videos, which can be potentially used in virtual simulators.
Abstract:Prototypical parts-based networks are becoming increasingly popular due to their faithful self-explanations. However, their similarity maps are calculated in the penultimate network layer. Therefore, the receptive field of the prototype activation region often depends on parts of the image outside this region, which can lead to misleading interpretations. We name this undesired behavior a spatial explanation misalignment and introduce an interpretability benchmark with a set of dedicated metrics for quantifying this phenomenon. In addition, we propose a method for misalignment compensation and apply it to existing state-of-the-art models. We show the expressiveness of our benchmark and the effectiveness of the proposed compensation methodology through extensive empirical studies.
Abstract:Multiple Instance Learning (MIL) is a weakly-supervised problem in which one label is assigned to the whole bag of instances. An important class of MIL models is instance-based, where we first classify instances and then aggregate those predictions to obtain a bag label. The most common MIL model is when we consider a bag as positive if at least one of its instances has a positive label. However, this reasoning does not hold in many real-life scenarios, where the positive bag label is often a consequence of a certain percentage of positive instances. To address this issue, we introduce a dedicated instance-based method called ProMIL, based on deep neural networks and Bernstein polynomial estimation. An important advantage of ProMIL is that it can automatically detect the optimal percentage level for decision-making. We show that ProMIL outperforms standard instance-based MIL in real-world medical applications. We make the code available.
Abstract:Nowadays artificial neural network models achieve remarkable results in many disciplines. Functions mapping the representation provided by the model to the probability distribution are the inseparable aspect of deep learning solutions. Although softmax is a commonly accepted probability mapping function in the machine learning community, it cannot return sparse outputs and always spreads the positive probability to all positions. In this paper, we propose r-softmax, a modification of the softmax, outputting sparse probability distribution with controllable sparsity rate. In contrast to the existing sparse probability mapping functions, we provide an intuitive mechanism for controlling the output sparsity level. We show on several multi-label datasets that r-softmax outperforms other sparse alternatives to softmax and is highly competitive with the original softmax. We also apply r-softmax to the self-attention module of a pre-trained transformer language model and demonstrate that it leads to improved performance when fine-tuning the model on different natural language processing tasks.
Abstract:We introduce ProtoSeg, a novel model for interpretable semantic image segmentation, which constructs its predictions using similar patches from the training set. To achieve accuracy comparable to baseline methods, we adapt the mechanism of prototypical parts and introduce a diversity loss function that increases the variety of prototypes within each class. We show that ProtoSeg discovers semantic concepts, in contrast to standard segmentation models. Experiments conducted on Pascal VOC and Cityscapes datasets confirm the precision and transparency of the presented method.