Topic:Information Extraction
What is Information Extraction? Information extraction is the process of automatically extracting structured information from unstructured text data.
Papers and Code
Dec 16, 2024
Abstract:Information extraction from the scientific literature is one of the main techniques to transform unstructured knowledge hidden in the text into structured data which can then be used for decision-making in down-stream tasks. One such area is Trust in AI, where factors contributing to human trust in artificial intelligence applications are studied. The relationships of these factors with human trust in such applications are complex. We hence explore this space from the lens of information extraction where, with the input of domain experts, we carefully design annotation guidelines, create the first annotated English dataset in this domain, investigate an LLM-guided annotation, and benchmark it with state-of-the-art methods using large language models in named entity and relation extraction. Our results indicate that this problem requires supervised learning which may not be currently feasible with prompt-based LLMs.
Via
Dec 17, 2024
Abstract:Document parsing is essential for analyzing complex document structures and extracting fine-grained information, supporting numerous downstream applications. However, existing methods often require integrating multiple independent models to handle various parsing tasks, leading to high complexity and maintenance overhead. To address this, we propose DocFusion, a lightweight generative model with only 0.28B parameters. It unifies task representations and achieves collaborative training through an improved objective function. Experiments reveal and leverage the mutually beneficial interaction among recognition tasks, and integrating recognition data significantly enhances detection performance. The final results demonstrate that DocFusion achieves state-of-the-art (SOTA) performance across four key tasks.
Via
Dec 17, 2024
Abstract:Visual Text-to-Speech (VTTS) aims to take the environmental image as the prompt to synthesize the reverberant speech for the spoken content. The challenge of this task lies in understanding the spatial environment from the image. Many attempts have been made to extract global spatial visual information from the RGB space of an spatial image. However, local and depth image information are crucial for understanding the spatial environment, which previous works have ignored. To address the issues, we propose a novel multi-modal and multi-scale spatial environment understanding scheme to achieve immersive VTTS, termed M2SE-VTTS. The multi-modal aims to take both the RGB and Depth spaces of the spatial image to learn more comprehensive spatial information, and the multi-scale seeks to model the local and global spatial knowledge simultaneously. Specifically, we first split the RGB and Depth images into patches and adopt the Gemini-generated environment captions to guide the local spatial understanding. After that, the multi-modal and multi-scale features are integrated by the local-aware global spatial understanding. In this way, M2SE-VTTS effectively models the interactions between local and global spatial contexts in the multi-modal spatial environment. Objective and subjective evaluations suggest that our model outperforms the advanced baselines in environmental speech generation. The code and audio samples are available at: https://github.com/AI-S2-Lab/M2SE-VTTS.
* 9 pages,2 figures, Accepted by AAAI'2025
Via
Dec 17, 2024
Abstract:As small unmanned aerial vehicles (UAVs) become increasingly prevalent, there is growing concern regarding their impact on public safety and privacy, highlighting the need for advanced tracking and trajectory estimation solutions. In response, this paper introduces a novel framework that utilizes audio array for 3D UAV trajectory estimation. Our approach incorporates a self-supervised learning model, starting with the conversion of audio data into mel-spectrograms, which are analyzed through an encoder to extract crucial temporal and spectral information. Simultaneously, UAV trajectories are estimated using LiDAR point clouds via unsupervised methods. These LiDAR-based estimations act as pseudo labels, enabling the training of an Audio Perception Network without requiring labeled data. In this architecture, the LiDAR-based system operates as the Teacher Network, guiding the Audio Perception Network, which serves as the Student Network. Once trained, the model can independently predict 3D trajectories using only audio signals, with no need for LiDAR data or external ground truth during deployment. To further enhance precision, we apply Gaussian Process modeling for improved spatiotemporal tracking. Our method delivers top-tier performance on the MMAUD dataset, establishing a new benchmark in trajectory estimation using self-supervised learning techniques without reliance on ground truth annotations.
Via
Dec 17, 2024
Abstract:The Land Matrix initiative (https://landmatrix.org) and its global observatory aim to provide reliable data on large-scale land acquisitions to inform debates and actions in sectors such as agriculture, extraction, or energy in low- and middle-income countries. Although these data are recognized in the academic world, they remain underutilized in public policy, mainly due to the complexity of access and exploitation, which requires technical expertise and a good understanding of the database schema. The objective of this work is to simplify access to data from different database systems. The methods proposed in this article are evaluated using data from the Land Matrix. This work presents various comparisons of Large Language Models (LLMs) as well as combinations of LLM adaptations (Prompt Engineering, RAG, Agents) to query different database systems (GraphQL and REST queries). The experiments are reproducible, and a demonstration is available online: https://github.com/tetis-nlp/landmatrix-graphql-python.
Via
Dec 17, 2024
Abstract:In-the-wild Dynamic facial expression recognition (DFER) encounters a significant challenge in recognizing emotion-related expressions, which are often temporally and spatially diluted by emotion-irrelevant expressions and global context respectively. Most of the prior DFER methods model tightly coupled spatiotemporal representations which may incorporate weakly relevant features, leading to information redundancy and emotion-irrelevant context bias. Several DFER methods have highlighted the significance of dynamic information, but utilize explicit manners to extract dynamic features with overly strong prior knowledge. In this paper, we propose a novel Implicit Facial Dynamics Disentanglement framework (IFDD). Through expanding wavelet lifting scheme to fully learnable framework, IFDD disentangles emotion-related dynamic information from emotion-irrelevant global context in an implicit manner, i.e., without exploit operations and external guidance. The disentanglement process of IFDD contains two stages, i.e., Inter-frame Static-dynamic Splitting Module (ISSM) for rough disentanglement estimation and Lifting-based Aggregation-Disentanglement Module (LADM) for further refinement. Specifically, ISSM explores inter-frame correlation to generate content-aware splitting indexes on-the-fly. We preliminarily utilize these indexes to split frame features into two groups, one with greater global similarity, and the other with more unique dynamic features. Subsequently, LADM first aggregates these two groups of features to obtain fine-grained global context features by an updater, and then disentangles emotion-related facial dynamic features from the global context by a predictor. Extensive experiments on in-the-wild datasets have demonstrated that IFDD outperforms prior supervised DFER methods with higher recognition accuracy and comparable efficiency.
* 14 pages, 5 figures
Via
Dec 16, 2024
Abstract:Engaging messages delivered by teachers are a key aspect of the classroom discourse that influences student outcomes. However, improving this communication is challenging due to difficulties in obtaining observations. This study presents a methodology for efficiently extracting actual observations of engaging messages from audio-recorded lessons. We collected 2,477 audio-recorded lessons from 75 teachers over two academic years. Using automatic transcription and keyword-based filtering analysis, we identified and classified engaging messages. This method reduced the information to be analysed by 90%, optimising the time and resources required compared to traditional manual coding. Subsequent descriptive analysis revealed that the most used messages emphasised the future benefits of participating in school activities. In addition, the use of engaging messages decreased as the academic year progressed. This study offers insights for researchers seeking to extract information from teachers' discourse in naturalistic settings and provides useful information for designing interventions to improve teachers' communication strategies.
Via
Dec 17, 2024
Abstract:We introduce EXIT, an extractive context compression framework that enhances both the effectiveness and efficiency of retrieval-augmented generation (RAG) in question answering (QA). Current RAG systems often struggle when retrieval models fail to rank the most relevant documents, leading to the inclusion of more context at the expense of latency and accuracy. While abstractive compression methods can drastically reduce token counts, their token-by-token generation process significantly increases end-to-end latency. Conversely, existing extractive methods reduce latency but rely on independent, non-adaptive sentence selection, failing to fully utilize contextual information. EXIT addresses these limitations by classifying sentences from retrieved documents - while preserving their contextual dependencies - enabling parallelizable, context-aware extraction that adapts to query complexity and retrieval quality. Our evaluations on both single-hop and multi-hop QA tasks show that EXIT consistently surpasses existing compression methods and even uncompressed baselines in QA accuracy, while also delivering substantial reductions in inference time and token count. By improving both effectiveness and efficiency, EXIT provides a promising direction for developing scalable, high-quality QA solutions in RAG pipelines. Our code is available at https://github.com/ThisIsHwang/EXIT
* Under Review
Via
Dec 16, 2024
Abstract:Logs are critical resources that record events, activities, or messages produced by software applications, operating systems, servers, and network devices. However, consolidating the heterogeneous logs and cross-referencing them is challenging and complicated. Manually analyzing the log data is time-consuming and prone to errors. LogBabylon is a centralized log data consolidating solution that leverages Large Language Models (LLMs) integrated with Retrieval-Augmented Generation (RAG) technology. LogBabylon interprets the log data in a human-readable way and adds insight analysis of the system performance and anomaly alerts. It provides a paramount view of the system landscape, enabling proactive management and rapid incident response. LogBabylon consolidates diverse log sources and enhances the extracted information's accuracy and relevancy. This facilitates a deeper understanding of log data, supporting more effective decision-making and operational efficiency. Furthermore, LogBabylon streamlines the log analysis process, significantly reducing the time and effort required to interpret complex datasets. Its capabilities extend to generating context-aware insights, offering an invaluable tool for continuous monitoring, performance optimization, and security assurance in dynamic computing environments.
Via
Dec 16, 2024
Abstract:Graph neural networks (GNNs) have emerged as go-to models for node classification in graph data due to their powerful abilities in fusing graph structures and attributes. However, such models strongly rely on adequate high-quality labeled data for training, which are expensive to acquire in practice. With the advent of large language models (LLMs), a promising way is to leverage their superb zero-shot capabilities and massive knowledge for node labeling. Despite promising results reported, this methodology either demands considerable queries to LLMs, or suffers from compromised performance caused by noisy labels produced by LLMs. To remedy these issues, this work presents Cella, an active self-training framework that integrates LLMs into GNNs in a cost-effective manner. The design recipe of Cella is to iteratively identify small sets of "critical" samples using GNNs and extract informative pseudo-labels for them with both LLMs and GNNs as additional supervision signals to enhance model training. Particularly, Cella includes three major components: (i) an effective active node selection strategy for initial annotations; (ii) a judicious sample selection scheme to sift out the "critical" nodes based on label disharmonicity and entropy; and (iii) a label refinement module combining LLMs and GNNs with rewired topology. Our extensive experiments over five benchmark text-attributed graph datasets demonstrate that Cella significantly outperforms the state of the arts under the same query budget to LLMs in terms of label-free node classification. In particular, on the DBLP dataset with 14.3k nodes, Cella is able to achieve an 8.08% conspicuous improvement in accuracy over the state-of-the-art at a cost of less than one cent.
* 15 pages, 5 figures
Via