Information extraction is the process of automatically extracting structured information from unstructured text data.
Proprietary large language models (LLMs) embody substantial economic value and are generally exposed only as black-box APIs, yet adversaries can still exploit their outputs to extract knowledge via distillation. Existing defenses focus exclusively on text-based distillation, leaving the important logit-based distillation largely unexplored. In this work, we analyze this problem and present an effective solution from an information-theoretic perspective. We characterize distillation-relevant information in teacher outputs using the conditional mutual information (CMI) between teacher logits and input queries conditioned on ground-truth labels. This quantity captures contextual information beneficial for model extraction, motivating us to defend distillation via CMI minimization. Guided by our theoretical analysis, we propose learning a transformation matrix that purifies the original outputs to enhance distillation resistance. We further derive a CMI-inspired anti-distillation objective to optimize this transformation, which effectively removes distillation-relevant information while preserving output utility. Extensive experiments across multiple LLMs and strong distillation algorithms demonstrate that the proposed method significantly degrades distillation performance while preserving task accuracy, effectively protecting models' intellectual property.
Extracting structured data from the web is often a trade-off between the brittle nature of manual heuristics and the prohibitive cost of Large Language Models. We introduce AXE (Adaptive X-Path Extractor), a pipeline that rethinks this process by treating the HTML DOM as a tree that needs pruning rather than just a wall of text to be read. AXE uses a specialized "pruning" mechanism to strip away boilerplate and irrelevant nodes, leaving behind a distilled, high-density context that allows a tiny 0.6B LLM to generate precise, structured outputs. To keep the model honest, we implement Grounded XPath Resolution (GXR), ensuring every extraction is physically traceable to a source node. Despite its low footprint, AXE achieves state-of-the-art zero-shot performance, outperforming several much larger, fully-trained alternatives with an F1 score of 88.1% on the SWDE dataset. By releasing our specialized adaptors, we aim to provide a practical, cost-effective path for large-scale web information extraction.
Large language models (LLMs) are advancing rapidly in medical NLP, yet Traditional Chinese Medicine (TCM) with its distinctive ontology, terminology, and reasoning patterns requires domain-faithful evaluation. Existing TCM benchmarks are fragmented in coverage and scale and rely on non-unified or generation-heavy scoring that hinders fair comparison. We present the LingLanMiDian (LingLan) benchmark, a large-scale, expert-curated, multi-task suite that unifies evaluation across knowledge recall, multi-hop reasoning, information extraction, and real-world clinical decision-making. LingLan introduces a consistent metric design, a synonym-tolerant protocol for clinical labels, a per-dataset 400-item Hard subset, and a reframing of diagnosis and treatment recommendation into single-choice decision recognition. We conduct comprehensive, zero-shot evaluations on 14 leading open-source and proprietary LLMs, providing a unified perspective on their strengths and limitations in TCM commonsense knowledge understanding, reasoning, and clinical decision support; critically, the evaluation on Hard subset reveals a substantial gap between current models and human experts in TCM-specialized reasoning. By bridging fundamental knowledge and applied reasoning through standardized evaluation, LingLan establishes a unified, quantitative, and extensible foundation for advancing TCM LLMs and domain-specific medical AI research. All evaluation data and code are available at https://github.com/TCMAI-BJTU/LingLan and http://tcmnlp.com.
Large Language Models (LLMs) have shown strong potential as conversational agents. Yet, their effectiveness remains limited by deficiencies in robust long-term memory, particularly in complex, long-term web-based services such as online emotional support. However, existing long-term dialogue benchmarks primarily focus on static and explicit fact retrieval, failing to evaluate agents in critical scenarios where user information is dispersed, implicit, and continuously evolving. To address this gap, we introduce ES-MemEval, a comprehensive benchmark that systematically evaluates five core memory capabilities: information extraction, temporal reasoning, conflict detection, abstention, and user modeling, in long-term emotional support settings, covering question answering, summarization, and dialogue generation tasks. To support the benchmark, we also propose EvoEmo, a multi-session dataset for personalized long-term emotional support that captures fragmented, implicit user disclosures and evolving user states. Extensive experiments on open-source long-context, commercial, and retrieval-augmented (RAG) LLMs show that explicit long-term memory is essential for reducing hallucinations and enabling effective personalization. At the same time, RAG improves factual consistency but struggles with temporal dynamics and evolving user states. These findings highlight both the potential and limitations of current paradigms and motivate more robust integration of memory and retrieval for long-term personalized dialogue systems.
Quantum generative models offer a novel approach to exploring high-dimensional Hilbert spaces but face significant challenges in scalability and expressibility when applied to multi-modal distributions. In this study, we explore a Hybrid Quantum-Classical U-Net architecture integrated with Adaptive Non-Local Observables (ANO) as a potential solution to these hurdles. By compressing classical data into a dense quantum latent space and utilizing trainable observables, our model aims to extract non-local features that complement classical processing. We also investigate the role of Skip Connections in preserving semantic information during the reverse diffusion process. Experimental results on the full MNIST dataset (digits 0-9) demonstrate that the proposed architecture is capable of generating structurally coherent and recognizable images for all digit classes. While hardware constraints still impose limitations on resolution, our findings suggest that hybrid architectures with adaptive measurements provide a feasible pathway for mitigating mode collapse and enhancing generative capabilities in the NISQ era.
Image inpainting has earned substantial progress, owing to the encoder-and-decoder pipeline, which is benefited from the Convolutional Neural Networks (CNNs) with convolutional downsampling to inpaint the masked regions semantically from the known regions within the encoder, coupled with an upsampling process from the decoder for final inpainting output. Recent studies intuitively identify the high-frequency structure and low-frequency texture to be extracted by CNNs from the encoder, and subsequently for a desirable upsampling recovery. However, the existing arts inevitably overlook the information loss for both structure and texture feature maps during the convolutional downsampling process, hence suffer from a non-ideal upsampling output. In this paper, we systematically answer whether and how the structure and texture feature map can mutually help to alleviate the information loss during the convolutional downsampling. Given the structure and texture feature maps, we adopt the statistical normalization and denormalization strategy for the reconstruction guidance during the convolutional downsampling process. The extensive experimental results validate its advantages to the state-of-the-arts over the images from low-to-high resolutions including 256*256 and 512*512, especially holds by substituting all the encoders by ours. Our code is available at https://github.com/htyjers/ConvInpaint-TSGL
Time series forecasting has traditionally been formulated as a model-centric, static, and single-pass prediction problem that maps historical observations to future values. While this paradigm has driven substantial progress, it proves insufficient in adaptive and multi-turn settings where forecasting requires informative feature extraction, reasoning-driven inference, iterative refinement, and continual adaptation over time. In this paper, we argue for agentic time series forecasting (ATSF), which reframes forecasting as an agentic process composed of perception, planning, action, reflection, and memory. Rather than focusing solely on predictive models, ATSF emphasizes organizing forecasting as an agentic workflow that can interact with tools, incorporate feedback from outcomes, and evolve through experience accumulation. We outline three representative implementation paradigms -- workflow-based design, agentic reinforcement learning, and a hybrid agentic workflow paradigm -- and discuss the opportunities and challenges that arise when shifting from model-centric prediction to agentic forecasting. Together, this position aims to establish agentic forecasting as a foundation for future research at the intersection of time series forecasting.
Diffusion models emerged as a leading approach in text-to-image generation, producing high-quality images from textual descriptions. However, attempting to achieve detailed control to get a desired image solely through text remains a laborious trial-and-error endeavor. Recent methods have introduced image-level controls alongside with text prompts, using prior images to extract conditional information such as edges, segmentation and depth maps. While effective, these methods apply conditions uniformly across the entire image, limiting localized control. In this paper, we propose a novel methodology to enable precise local control over user-defined regions of an image, while leaving to the diffusion model the task of autonomously generating the remaining areas according to the original prompt. Our approach introduces a new training framework that incorporates masking features and an additional loss term, which leverages the prediction of the initial latent vector at any diffusion step to enhance the correspondence between the current step and the final sample in the latent space. Extensive experiments demonstrate that our method effectively synthesizes high-quality images with controlled local conditions.
Deep watermarking methods often share similar encoder-decoder architectures, yet differ substantially in their functional behaviors. We propose DiM, a new multi-dimensional watermarking framework that formulates watermarking as a dimension-aware mapping problem, thereby unifying existing watermarking methods at the functional level. Under DiM, watermark information is modeled as payloads of different dimensionalities, including one-dimensional binary messages, two-dimensional spatial masks, and three-dimensional spatiotemporal structures. We find that the dimensional configuration of embedding and extraction largely determines the resulting watermarking behavior. Same-dimensional mappings preserve payload structure and support fine-grained control, while cross-dimensional mappings enable spatial or spatiotemporal localization. We instantiate DiM in the video domain, where spatiotemporal representations enable a broader set of dimension mappings. Experiments demonstrate that varying only the embedding and extraction dimensions, without architectural changes, leads to different watermarking capabilities, including spatiotemporal tamper localization, local embedding control, and recovery of temporal order under frame disruptions.
Image demoiréing aims to remove structured moiré artifacts in recaptured imagery, where degradations are highly frequency-dependent and vary across scales and directions. While recent deep networks achieve high-quality restoration, their full-precision designs remain costly for deployment. Binarization offers an extreme compression regime by quantizing both activations and weights to 1-bit. Yet, it has been rarely studied for demoiréing and performs poorly when naively applied. In this work, we propose BinaryDemoire, a binarized demoiréing framework that explicitly accommodates the frequency structure of moiré degradations. First, we introduce a moiré-aware binary gate (MABG) that extracts lightweight frequency descriptors together with activation statistics. It predicts channel-wise gating coefficients to condition the aggregation of binary convolution responses. Second, we design a shuffle-grouped residual adapter (SGRA) that performs structured sparse shortcut alignment. It further integrates interleaved mixing to promote information exchange across different channel partitions. Extensive experiments on four benchmarks demonstrate that the proposed BinaryDemoire surpasses current binarization methods. Code: https://github.com/zhengchen1999/BinaryDemoire.