https://github.com/synsin0/EFFOcc.
3D occupancy prediction (Occ) is a rapidly rising challenging perception task in the field of autonomous driving which represents the driving scene as uniformly partitioned 3D voxel grids with semantics. Compared to 3D object detection, grid perception has great advantage of better recognizing irregularly shaped, unknown category, or partially occluded general objects. However, existing 3D occupancy networks (occnets) are both computationally heavy and label-hungry. In terms of model complexity, occnets are commonly composed of heavy Conv3D modules or transformers on the voxel level. In terms of label annotations requirements, occnets are supervised with large-scale expensive dense voxel labels. Model and data inefficiency, caused by excessive network parameters and label annotations requirement, severely hinder the onboard deployment of occnets. This paper proposes an efficient 3d occupancy network (EFFOcc), that targets the minimal network complexity and label requirement while achieving state-of-the-art accuracy. EFFOcc only uses simple 2D operators, and improves Occ accuracy to the state-of-the-art on multiple large-scale benchmarks: Occ3D-nuScenes, Occ3D-Waymo, and OpenOccupancy-nuScenes. On Occ3D-nuScenes benchmark, EFFOcc has only 18.4M parameters, and achieves 50.46 in terms of mean IoU (mIoU), to our knowledge, it is the occnet with minimal parameters compared with related occnets. Moreover, we propose a two-stage active learning strategy to reduce the requirements of labelled data. Active EFFOcc trained with 6\% labelled voxels achieves 47.19 mIoU, which is 95.7% fully supervised performance. The proposed EFFOcc also supports improved vision-only occupancy prediction with the aid of region-decomposed distillation. Code and demo videos will be available at