Graph outlier detection is an emerging but crucial machine learning task with numerous applications. Despite the proliferation of algorithms developed in recent years, the lack of a standard and unified setting for performance evaluation limits their advancement and usage in real-world applications. To tap the gap, we present, (to our best knowledge) the first comprehensive unsupervised node outlier detection benchmark for graphs called UNOD, with the following highlights: (1) evaluating fourteen methods with backbone spanning from classical matrix factorization to the latest graph neural networks; (2) benchmarking the method performance with different types of injected outliers and organic outliers on real-world datasets; (3) comparing the efficiency and scalability of the algorithms by runtime and GPU memory usage on synthetic graphs at different scales. Based on the analyses of extensive experimental results, we discuss the pros and cons of current UNOD methods, and point out multiple crucial and promising future research directions.