Abstract:In-band full-duplex (IBFD) is a theoretically effective solution to increase the overall throughput for the future wireless communications system by enabling transmission and reception over the same time-frequency resources. However, reliable source reconstruction remains a great challenge in the practical IBFD systems due to the non-ideal elimination of the self-interference and the inherent limitations of the separate source and channel coding methods. On the other hand, artificial intelligence-enabled semantic communication can provide a viable direction for the optimization of the IBFD system. This article introduces a novel IBFD paradigm with the guidance of semantic communication called semantics-division duplexing (SDD). It utilizes semantic domain processing to further suppress self-interference, distinguish the expected semantic information, and recover the desired sources. Further integration of the digital and semantic domain processing can be implemented so as to achieve intelligent and concise communications. We present the advantages of the SDD paradigm with theoretical explanations and provide some visualized results to verify its effectiveness.
Abstract:Recent advances in deep learning have led to increased interest in solving high-efficiency end-to-end transmission problems using methods that employ the nonlinear property of neural networks. These methods, we call semantic coding, extract semantic features of the source signal across space and time, and design source-channel coding methods to transmit these features over wireless channels. Rapid progress has led to numerous research papers, but a consolidation of the discovered knowledge has not yet emerged. In this article, we gather ideas to categorize the expansive aspects on semantic coding as two paradigms, i.e., explicit and implicit semantic coding. We first focus on those two paradigms of semantic coding by identifying their common and different components in building semantic communication systems. We then focus on the applications of semantic coding to different transmission tasks. Our article highlights the improved quality, flexibility, and capability brought by semantic coded transmission. Finally, we point out future directions.
Abstract:Recent deep learning methods have led to increased interest in solving high-efficiency end-to-end transmission problems. These methods, we call nonlinear transform source-channel coding (NTSCC), extract the semantic latent features of source signal, and learn entropy model to guide the joint source-channel coding with variable rate to transmit latent features over wireless channels. In this paper, we propose a comprehensive framework for improving NTSCC, thereby higher system coding gain, better model versatility, and more flexible adaptation strategy aligned with semantic guidance are all achieved. This new sophisticated NTSCC model is now ready to support large-size data interaction in emerging XR, which catalyzes the application of semantic communications. Specifically, we propose three useful improvement approaches. First, we introduce a contextual entropy model to better capture the spatial correlations among the semantic latent features, thereby more accurate rate allocation and contextual joint source-channel coding are developed accordingly to enable higher coding gain. On that basis, we further propose response network architectures to formulate versatile NTSCC, i.e., once-trained model supports various rates and channel states that benefits the practical deployment. Following this, we propose an online latent feature editing method to enable more flexible coding rate control aligned with some specific semantic guidance. By comprehensively applying the above three improvement methods for NTSCC, a deployment-friendly semantic coded transmission system stands out finally. Our improved NTSCC system has been experimentally verified to achieve 16.35% channel bandwidth saving versus the state-of-the-art engineered VTM + 5G LDPC coded transmission system with lower processing latency.
Abstract:Most semantic communication systems leverage deep learning models to provide end-to-end transmission performance surpassing the established source and channel coding approaches. While, so far, research has mainly focused on architecture and model improvements, but such a model trained over a full dataset and ergodic channel responses is unlikely to be optimal for every test instance. Due to limitations on the model capacity and imperfect optimization and generalization, such learned models will be suboptimal especially when the testing data distribution or channel response is different from that in the training phase, as is likely to be the case in practice. To tackle this, in this paper, we propose a novel semantic communication paradigm by leveraging the deep learning model's overfitting property. Our model can for instance be updated after deployment, which can further lead to substantial gains in terms of the transmission rate-distortion (RD) performance. This new system is named adaptive semantic communication (ASC). In our ASC system, the ingredients of wireless transmitted stream include both the semantic representations of source data and the adapted decoder model parameters. Specifically, we take the overfitting concept to the extreme, proposing a series of ingenious methods to adapt the semantic codec or representations to an individual data or channel state instance. The whole ASC system design is formulated as an optimization problem whose goal is to minimize the loss function that is a tripartite tradeoff among the data rate, model rate, and distortion terms. The experiments (including user study) verify the effectiveness and efficiency of our ASC system. Notably, the substantial gain of our overfitted coding paradigm can catalyze semantic communication upgrading to a new era.
Abstract:Classical communication paradigms focus on accurately transmitting bits over a noisy channel, and Shannon theory provides a fundamental theoretical limit on the rate of reliable communications. In this approach, bits are treated equally, and the communication system is oblivious to what meaning these bits convey or how they would be used. Future communications towards intelligence and conciseness will predictably play a dominant role, and the proliferation of connected intelligent agents requires a radical rethinking of coded transmission paradigm to support the new communication morphology on the horizon. The recent concept of "semantic communications" offers a promising research direction. Injecting semantic guidance into the coded transmission design to achieve semantics-aware communications shows great potential for further breakthrough in effectiveness and reliability. This article sheds light on semantics-guided source and channel coding as a transmission paradigm of semantic communications, which exploits both data semantics diversity and wireless channel diversity together to boost the whole system performance. We present the general system architecture and key techniques, and indicate some open issues on this topic.
Abstract:In this paper, we design a new class of high-efficiency deep joint source-channel coding methods to achieve end-to-end video transmission over wireless channels. The proposed methods exploit nonlinear transform and conditional coding architecture to adaptively extract semantic features across video frames, and transmit semantic feature domain representations over wireless channels via deep joint source-channel coding. Our framework is collected under the name deep video semantic transmission (DVST). In particular, benefiting from the strong temporal prior provided by the feature domain context, the learned nonlinear transform function becomes temporally adaptive, resulting in a richer and more accurate entropy model guiding the transmission of current frame. Accordingly, a novel rate adaptive transmission mechanism is developed to customize deep joint source-channel coding for video sources. It learns to allocate the limited channel bandwidth within and among video frames to maximize the overall transmission performance. The whole DVST design is formulated as an optimization problem whose goal is to minimize the end-to-end transmission rate-distortion performance under perceptual quality metrics or machine vision task performance metrics. Across standard video source test sequences and various communication scenarios, experiments show that our DVST can generally surpass traditional wireless video coded transmission schemes. The proposed DVST framework can well support future semantic communications due to its video content-aware and machine vision task integration abilities.
Abstract:As one novel approach to realize end-to-end wireless image semantic transmission, deep learning-based joint source-channel coding (deep JSCC) method is emerging in both deep learning and communication communities. However, current deep JSCC image transmission systems are typically optimized for traditional distortion metrics such as peak signal-to-noise ratio (PSNR) or multi-scale structural similarity (MS-SSIM). But for low transmission rates, due to the imperfect wireless channel, these distortion metrics lose significance as they favor pixel-wise preservation. To account for human visual perception in semantic communications, it is of great importance to develop new deep JSCC systems optimized beyond traditional PSNR and MS-SSIM metrics. In this paper, we introduce adversarial losses to optimize deep JSCC, which tends to preserve global semantic information and local texture. Our new deep JSCC architecture combines encoder, wireless channel, decoder/generator, and discriminator, which are jointly learned under both perceptual and adversarial losses. Our method yields human visually much more pleasing results than state-of-the-art engineered image coded transmission systems and traditional deep JSCC systems. A user study confirms that achieving the perceptually similar end-to-end image transmission quality, the proposed method can save about 50\% wireless channel bandwidth cost.
Abstract:In this paper, we propose a new class of high-efficient deep joint source-channel coding methods that can closely adapt to the source distribution under the nonlinear transform, it can be collected under the name nonlinear transform source-channel coding (NTSCC). In the considered model, the transmitter first learns a nonlinear analysis transform to map the source data into latent space, then transmits the latent representation to the receiver via deep joint source-channel coding. Our model incorporates the nonlinear transform as a strong prior to effectively extract the source semantic features and provide side information for source-channel coding. Unlike existing conventional deep joint source-channel coding methods, the proposed NTSCC essentially learns both the source latent representation and an entropy model as the prior on the latent representation. Accordingly, novel adaptive rate transmission and hyperprior-aided codec refinement mechanisms are developed to upgrade deep joint source-channel coding. The whole system design is formulated as an optimization problem whose goal is to minimize the end-to-end transmission rate-distortion performance under established perceptual quality metrics. Across simple example sources and test image sources, we find that the proposed NTSCC transmission method generally outperforms both the analog transmission using the standard deep joint source-channel coding and the classical separation-based digital transmission. Notably, the proposed NTSCC method can potentially support future semantic communications due to its vigorous content-aware ability.
Abstract:With the standardization and deployment of 5G, the focus has now shifted toward developing beyond-5G (B5G) solutions. A new wave of applications and services will demand ultra-high data rates and reliability. To this end, future wireless systems are expected to pave the way for entirely new fundamental air interface technologies to attain a breakthrough in spectrum efficiency (SE). This article discusses a new paradigm, named generalized polarization transform (GPT), to achieve an integrated design of coding, modulation, multi-antenna, multiple access, etc., in a real sense. The GPT enabled air interface develops far-reaching insights that the joint optimization of critical air interface ingredients can achieve remarkable gains on SE compared with the state-of-the-art module-stacking design. We present a comprehensive overview of the application of GPT in various coded transmission systems approaching Shannon limits under short to moderate blocklengths and highlight several promising trends for future research.
Abstract:Classifying the sub-categories of an object from the same super-category (e.g. bird species, car and aircraft models) in fine-grained visual classification (FGVC) highly relies on discriminative feature representation and accurate region localization. Existing approaches mainly focus on distilling information from high-level features. In this paper, however, we show that by integrating low-level information (e.g. color, edge junctions, texture patterns), performance can be improved with enhanced feature representation and accurately located discriminative regions. Our solution, named Attention Pyramid Convolutional Neural Network (AP-CNN), consists of a) a pyramidal hierarchy structure with a top-down feature pathway and a bottom-up attention pathway, and hence learns both high-level semantic and low-level detailed feature representation, and b) an ROI guided refinement strategy with ROI guided dropblock and ROI guided zoom-in, which refines features with discriminative local regions enhanced and background noises eliminated. The proposed AP-CNN can be trained end-to-end, without the need of additional bounding box/part annotations. Extensive experiments on three commonly used FGVC datasets (CUB-200-2011, Stanford Cars, and FGVC-Aircraft) demonstrate that our approach can achieve state-of-the-art performance. Code available at \url{http://dwz1.cc/ci8so8a}