Abstract:Rapidly learning from ongoing experiences and remembering past events with a flexible memory system are two core capacities of biological intelligence. While the underlying neural mechanisms are not fully understood, various evidence supports that synaptic plasticity plays a critical role in memory formation and fast learning. Inspired by these results, we equip Recurrent Neural Networks (RNNs) with plasticity rules to enable them to adapt their parameters according to ongoing experiences. In addition to the traditional local Hebbian plasticity, we propose a global, gradient-based plasticity rule, which allows the model to evolve towards its self-determined target. Our models show promising results on sequential and associative memory tasks, illustrating their ability to robustly form and retain memories. In the meantime, these models can cope with many challenging few-shot learning problems. Comparing different plasticity rules under the same framework shows that Hebbian plasticity is well-suited for several memory and associative learning tasks; however, it is outperformed by gradient-based plasticity on few-shot regression tasks which require the model to infer the underlying mapping. Code is available at https://github.com/yuvenduan/PlasticRNNs.
Abstract:Continual learning aims to learn a sequence of tasks from dynamic data distributions. Without accessing to the old training samples, knowledge transfer from the old tasks to each new task is difficult to determine, which might be either positive or negative. If the old knowledge interferes with the learning of a new task, i.e., the forward knowledge transfer is negative, then precisely remembering the old tasks will further aggravate the interference, thus decreasing the performance of continual learning. By contrast, biological neural networks can actively forget the old knowledge that conflicts with the learning of a new experience, through regulating the learning-triggered synaptic expansion and synaptic convergence. Inspired by the biological active forgetting, we propose to actively forget the old knowledge that limits the learning of new tasks to benefit continual learning. Under the framework of Bayesian continual learning, we develop a novel approach named Active Forgetting with synaptic Expansion-Convergence (AFEC). Our method dynamically expands parameters to learn each new task and then selectively combines them, which is formally consistent with the underlying mechanism of biological active forgetting. We extensively evaluate AFEC on a variety of continual learning benchmarks, including CIFAR-10 regression tasks, visual classification tasks and Atari reinforcement tasks, where AFEC effectively improves the learning of new tasks and achieves the state-of-the-art performance in a plug-and-play way.
Abstract:Many existing interpretation methods of convolutional neural networks (CNNs) mainly analyze in spatial domain, yet model interpretability in frequency domain has been rarely studied. To the best of our knowledge, there is no study on the interpretation of modern CNNs from the perspective of the frequency proportion of filters. In this work, we analyze the frequency properties of filters in the first layer as it is the entrance of information and relatively more convenient for analysis. By controlling the proportion of different frequency filters in the training stage, the network classification accuracy and model robustness is evaluated and our results reveal that it has a great impact on the robustness to common corruptions. Moreover, a learnable modulation of frequency proportion with perturbation in power spectrum is proposed from the perspective of frequency domain. Experiments on CIFAR-10-C show 10.97% average robustness gains for ResNet-18 with negligible natural accuracy degradation.