Abstract:Despite the prevalence of reconstruction-based deep learning methods, time series anomaly detection remains challenging. Existing approaches often struggle with limited temporal contexts, inadequate representation of normal patterns, and flawed evaluation metrics, hindering their effectiveness in identifying aberrant behavior. To address these issues, we introduce $\textbf{{SimAD}}$, a $\textbf{{Sim}}$ple dissimilarity-based approach for time series $\textbf{{A}}$nomaly $\textbf{{D}}$etection. SimAD incorporates an advanced feature extractor adept at processing extended temporal windows, utilizes the EmbedPatch encoder to integrate normal behavioral patterns comprehensively, and introduces an innovative ContrastFusion module designed to accentuate distributional divergences between normal and abnormal data, thereby enhancing the robustness of anomaly discrimination. Additionally, we propose two robust evaluation metrics, UAff and NAff, addressing the limitations of existing metrics and demonstrating their reliability through theoretical and experimental analyses. Experiments across $\textbf{seven}$ diverse time series datasets demonstrate SimAD's superior performance compared to state-of-the-art methods, achieving relative improvements of $\textbf{19.85%}$ on F1, $\textbf{4.44%}$ on Aff-F1, $\textbf{77.79%}$ on NAff-F1, and $\textbf{9.69%}$ on AUC on six multivariate datasets. Code and pre-trained models are available at https://github.com/EmorZz1G/SimAD.
Abstract:Anomaly detection stands as a crucial aspect of time series analysis, aiming to identify abnormal events in time series samples. The central challenge of this task lies in effectively learning the representations of normal and abnormal patterns in a label-lacking scenario. Previous research mostly relied on reconstruction-based approaches, restricting the representational abilities of the models. In addition, most of the current deep learning-based methods are not lightweight enough, which prompts us to design a more efficient framework for anomaly detection. In this study, we introduce PatchAD, a novel multi-scale patch-based MLP-Mixer architecture that leverages contrastive learning for representational extraction and anomaly detection. Specifically, PatchAD is composed of four distinct MLP Mixers, exclusively utilizing the MLP architecture for high efficiency and lightweight architecture. Additionally, we also innovatively crafted a dual project constraint module to mitigate potential model degradation. Comprehensive experiments demonstrate that PatchAD achieves state-of-the-art results across multiple real-world multivariate time series datasets. Our code is publicly available https://github.com/EmorZz1G/PatchAD