Abstract:The move to next-generation wireless communications with extremely large-scale antenna arrays (ELAAs) brings the communications into the radiative near-field (RNF) region, where distance-aware focusing is feasible. However, high-frequency RNF links are highly vulnerable to blockage in indoor environments dominated by half-space obstacles (walls, corners) that create knife-edge shadows. Conventional near-field focused beams offer high gain in line-of-sight (LoS) scenarios but suffer from severe energy truncation and effective-rank collapse in shadowed regions, often necessitating the deployment of auxiliary hardware such as Reconfigurable Intelligent Surfaces (RIS) to restore connectivity. We propose a beamforming strategy that exploits the auto-bending property of Airy beams to mitigate half-space blockage without additional hardware. The Airy beam is designed to ``ride'' the diffraction edge, accelerating its main lobe into the shadow to restore connectivity. Our contributions are threefold: (i) a Green's function-based RNF multi-user channel model that analytically reveals singular-value collapse behind knife-edge obstacles; (ii) an Airy analog beamforming scheme that optimizes the bending trajectory to recover the effective channel rank; and (iii) an Airy null-steering method that aligns oscillatory nulls with bright-region users to suppress interference in mixed shadow/bright scenarios. Simulations show that the proposed edge-riding Airy strategy achieves a Signal-to-Noise Ratio (SNR) improvement of over 20 dB and restores full-rank connectivity in shadowed links compared to conventional RNF focusing, virtually eliminating outage in geometric shadows and increasing multi-user spectral efficiency by approximately 35\% under typical indoor ELAA configurations. These results demonstrate robust RNF multi-user access in half-space blockage scenarios without relying on RIS.
Abstract:Intelligent metasurfaces have demonstrated great promise in revolutionizing wireless communications. One notable example is the two-dimensional (2D) programmable metasurface, which is also known as reconfigurable intelligent surfaces (RIS) to manipulate the wireless propagation environment to enhance network coverage. More recently, three-dimensional (3D) stacked intelligent metasurfaces (SIM) have been developed to substantially improve signal processing efficiency by directly processing analog electromagnetic signals in the wave domain. Another exciting breakthrough is the flexible intelligent metasurface (FIM), which possesses the ability to morph its 3D surface shape in response to dynamic wireless channels and thus achieve diversity gain. In this paper, we provide a comprehensive overview of these emerging intelligent metasurface technologies. We commence by examining recent experiments of RIS and exploring its applications from four perspectives. Furthermore, we delve into the fundamental principles underlying SIM, discussing relevant prototypes as well as their applications. Numerical results are also provided to illustrate the potential of SIM for analog signal processing. Finally, we review the state-of-the-art of FIM technology, discussing its impact on wireless communications and identifying the key challenges of integrating FIMs into wireless networks.
Abstract:Holographic multiple-input multiple-output (HMIMO) utilizes a compact antenna array to form a nearly continuous aperture, thereby enhancing higher capacity and more flexible configurations compared with conventional MIMO systems, making it attractive in current scientific research. Key questions naturally arise regarding the potential of HMIMO to surpass Shannon's theoretical limits and how far its capabilities can be extended. However, the traditional Shannon information theory falls short in addressing these inquiries because it only focuses on the information itself while neglecting the underlying carrier, electromagnetic (EM) waves, and environmental interactions. To fill up the gap between the theoretical analysis and the practical application for HMIMO systems, we introduce electromagnetic information theory (EIT) in this paper. This paper begins by laying the foundation for HMIMO-oriented EIT, encompassing EM wave equations and communication regions. In the context of HMIMO systems, the resultant physical limitations are presented, involving Chu's limit, Harrington's limit, Hannan's limit, and the evaluation of coupling effects. Field sampling and HMIMO-assisted oversampling are also discussed to guide the optimal HMIMO design within the EIT framework. To comprehensively depict the EM-compliant propagation process, we present the approximate and exact channel modeling approaches in near-/far-field zones. Furthermore, we discuss both traditional Shannon's information theory, employing the probabilistic method, and Kolmogorov information theory, utilizing the functional analysis, for HMIMO-oriented EIT systems.