Abstract:The verbalizer, which serves to map label words to class labels, is an essential component of prompt-tuning. In this paper, we present a novel approach to constructing verbalizers. While existing methods for verbalizer construction mainly rely on augmenting and refining sets of synonyms or related words based on class names, this paradigm suffers from a narrow perspective and lack of abstraction, resulting in limited coverage and high bias in the label-word space. To address this issue, we propose a label-word construction process that incorporates scenario-specific concepts. Specifically, we extract rich concepts from task-specific scenarios as label-word candidates and then develop a novel cascade calibration module to refine the candidates into a set of label words for each class. We evaluate the effectiveness of our proposed approach through extensive experiments on {five} widely used datasets for zero-shot text classification. The results demonstrate that our method outperforms existing methods and achieves state-of-the-art results.
Abstract:Researchers have explored the potential of utilizing pre-trained language models, such as CodeBERT, to improve source code-related tasks. Previous studies have mainly relied on CodeBERT's text embedding capability and the `[CLS]' sentence embedding information as semantic representations for fine-tuning downstream source code-related tasks. However, these methods require additional neural network layers to extract effective features, resulting in higher computational costs. Furthermore, existing approaches have not leveraged the rich knowledge contained in both source code and related text, which can lead to lower accuracy. This paper presents a novel approach, CodePrompt, which utilizes rich knowledge recalled from a pre-trained model by prompt learning and an attention mechanism to improve source code-related classification tasks. Our approach initially motivates the language model with prompt information to retrieve abundant knowledge associated with the input as representative features, thus avoiding the need for additional neural network layers and reducing computational costs. Subsequently, we employ an attention mechanism to aggregate multiple layers of related knowledge for each task as final features to boost their accuracy. We conducted extensive experiments on four downstream source code-related tasks to evaluate our approach and our results demonstrate that CodePrompt achieves new state-of-the-art performance on the accuracy metric while also exhibiting computation cost-saving capabilities.