Abstract:Stereo video synthesis from a monocular input is a demanding task in the fields of spatial computing and virtual reality. The main challenges of this task lie on the insufficiency of high-quality paired stereo videos for training and the difficulty of maintaining the spatio-temporal consistency between frames. Existing methods primarily address these issues by directly applying novel view synthesis (NVS) techniques to video, while facing limitations such as the inability to effectively represent dynamic scenes and the requirement for large amounts of training data. In this paper, we introduce a novel self-supervised stereo video synthesis paradigm via a video diffusion model, termed SpatialDreamer, which meets the challenges head-on. Firstly, to address the stereo video data insufficiency, we propose a Depth based Video Generation module DVG, which employs a forward-backward rendering mechanism to generate paired videos with geometric and temporal priors. Leveraging data generated by DVG, we propose RefinerNet along with a self-supervised synthetic framework designed to facilitate efficient and dedicated training. More importantly, we devise a consistency control module, which consists of a metric of stereo deviation strength and a Temporal Interaction Learning module TIL for geometric and temporal consistency ensurance respectively. We evaluated the proposed method against various benchmark methods, with the results showcasing its superior performance.
Abstract:In this paper, a pervasive wireless channel modeling theory is first proposed, which uses a unified channel modeling method and a unified equation of channel impulse response (CIR), and can integrate important channel characteristics at different frequency bands and scenarios. Then, we apply the proposed theory to a three dimensional (3D) space-time-frequency (STF) non-stationary geometry-based stochastic model (GBSM) for the sixth generation (6G) wireless communication systems. The proposed 6G pervasive channel model (6GPCM) can characterize statistical properties of channels at all frequency bands from sub-6 GHz to visible light communication (VLC) bands and all scenarios such as unmanned aerial vehicle (UAV), maritime, (ultra-)massive multiple-input multiple-output (MIMO), reconfigurable intelligent surface (RIS), and industry Internet of things (IIoT) scenarios. By adjusting channel model parameters, the 6GPCM can be reduced to various simplified channel models for specific frequency bands and scenarios. Also, it includes standard fifth generation (5G) channel models as special cases. In addition, key statistical properties of the proposed 6GPCM are derived, simulated, and verified by various channel measurement results, which clearly demonstrates its accuracy, pervasiveness, and applicability.