Abstract:Although convolution neural network based stereo matching architectures have made impressive achievements, there are still some limitations: 1) Convolutional Feature (CF) tends to capture appearance information, which is inadequate for accurate matching. 2) Due to the static filters, current convolution based disparity refinement modules often produce over-smooth results. In this paper, we present two schemes to address these issues, where some traditional wisdoms are integrated. Firstly, we introduce a pairwise feature for deep stereo matching networks, named LSP (Local Similarity Pattern). Through explicitly revealing the neighbor relationships, LSP contains rich structural information, which can be leveraged to aid CF for more discriminative feature description. Secondly, we design a dynamic self-reassembling refinement strategy and apply it to the cost distribution and the disparity map respectively. The former could be equipped with the unimodal distribution constraint to alleviate the over-smoothing problem, and the latter is more practical. The effectiveness of the proposed methods is demonstrated via incorporating them into two well-known basic architectures, GwcNet and GANet-deep. Experimental results on the SceneFlow and KITTI benchmarks show that our modules significantly improve the performance of the model.
Abstract:We propose a new network architecture, the Fractal Pyramid Networks (PFNs) for pixel-wise prediction tasks as an alternative to the widely used encoder-decoder structure. In the encoder-decoder structure, the input is processed by an encoding-decoding pipeline that tries to get a semantic large-channel feature. Different from that, our proposed PFNs hold multiple information processing pathways and encode the information to multiple separate small-channel features. On the task of self-supervised monocular depth estimation, even without ImageNet pretrained, our models can compete or outperform the state-of-the-art methods on the KITTI dataset with much fewer parameters. Moreover, the visual quality of the prediction is significantly improved. The experiment of semantic segmentation provides evidence that the PFNs can be applied to other pixel-wise prediction tasks, and demonstrates that our models can catch more global structure information.