Abstract:As artificial neural networks grow in complexity, understanding their inner workings becomes increasingly challenging, which is particularly important in healthcare applications. The intrinsic evaluation metrics of autoregressive neural language models (NLMs), perplexity (PPL), can reflect how "surprised" an NLM model is at novel input. PPL has been widely used to understand the behavior of NLMs. Previous findings show that changes in PPL when masking attention layers in pre-trained transformer-based NLMs reflect linguistic anomalies associated with Alzheimer's disease dementia. Building upon this, we explore a novel bidirectional attention head ablation method that exhibits properties attributed to the concepts of cognitive and brain reserve in human brain studies, which postulate that people with more neurons in the brain and more efficient processing are more resilient to neurodegeneration. Our results show that larger GPT-2 models require a disproportionately larger share of attention heads to be masked/ablated to display degradation of similar magnitude to masking in smaller models. These results suggest that the attention mechanism in transformer models may present an analogue to the notions of cognitive and brain reserve and could potentially be used to model certain aspects of the progression of neurodegenerative disorders and aging.
Abstract:Modeling and analyzing long sequences of text is an essential task for Natural Language Processing. Success in capturing long text dynamics using neural language models will facilitate many downstream tasks such as coherence evaluation, text generation, machine translation and so on. This paper presents a novel approach to model sequences through a stochastic process. We introduce a likelihood-based training objective for the text encoder and design a more thorough measurement (score) for long text evaluation compared to the previous approach. The proposed training objective effectively preserves the sequence coherence, while the new score comprehensively captures both temporal and spatial dependencies. Theoretical properties of our new score show its advantages in sequence evaluation. Experimental results show superior performance in various sequence evaluation tasks, including global and local discrimination within and between documents of different lengths. We also demonstrate the encoder achieves competitive results on discriminating human and AI written text.
Abstract:Measuring the coherence of text is a vital aspect of evaluating the quality of written content. Recent advancements in neural coherence modeling have demonstrated their efficacy in capturing entity coreference and discourse relations, thereby enhancing coherence evaluation. However, many existing methods heavily depend on static embeddings or focus narrowly on nearby context, constraining their capacity to measure the overarching coherence of long texts. In this paper, we posit that coherent texts inherently manifest a sequential and cohesive interplay among sentences, effectively conveying the central theme, purpose, or standpoint. To explore this abstract relationship, we introduce the "BBScore," a novel reference-free metric grounded in Brownian bridge theory for assessing text coherence. Our findings showcase that when synergized with a simple additional classification component, this metric attains a performance level comparable to state-of-the-art techniques on standard artificial discrimination tasks. We also establish in downstream tasks that this metric effectively differentiates between human-written documents and text generated by large language models under a specific domain. Furthermore, we illustrate the efficacy of this approach in detecting written styles attributed to diverse large language models, underscoring its potential for generalizability. In summary, we present a novel Brownian bridge coherence metric capable of measuring both local and global text coherence, while circumventing the need for end-to-end model training. This flexibility allows for its application in various downstream tasks.
Abstract:Foundation models are a current focus of attention in both industry and academia. While they have shown their capabilities in a variety of tasks, in-depth research is required to determine their robustness to distribution shift when used as a basis for supervised machine learning. This is especially important in the context of clinical data, with particular limitations related to data accessibility, lack of pretraining materials, and limited availability of high-quality annotations. In this work, we examine the stability of models based on representations from foundation models under distribution shift. We focus on confounding by provenance, a form of distribution shift that emerges in the context of multi-institutional datasets when there are differences in source-specific language use and class distributions. Using a sampling strategy that synthetically induces varying degrees of distribution shift, we evaluate the extent to which representations from foundation models result in predictions that are inherently robust to confounding by provenance. Additionally, we examine the effectiveness of a straightforward confounding adjustment method inspired by Pearl's conception of backdoor adjustment. Results indicate that while foundation models do show some out-of-the-box robustness to confounding-by-provenance related distribution shifts, this can be considerably improved through adjustment. These findings suggest a need for deliberate adjustment of predictive models using representations from foundation models in the context of source-specific distributional differences.
Abstract:Natural Language Processing (NLP) methods have been broadly applied to clinical tasks. Machine learning and deep learning approaches have been used to improve the performance of clinical NLP. However, these approaches require sufficiently large datasets for training, and trained models have been shown to transfer poorly across sites. These issues have led to the promotion of data collection and integration across different institutions for accurate and portable models. However, this can introduce a form of bias called confounding by provenance. When source-specific data distributions differ at deployment, this may harm model performance. To address this issue, we evaluate the utility of backdoor adjustment for text classification in a multi-site dataset of clinical notes annotated for mentions of substance abuse. Using an evaluation framework devised to measure robustness to distributional shifts, we assess the utility of backdoor adjustment. Our results indicate that backdoor adjustment can effectively mitigate for confounding shift.
Abstract:In healthcare, the ability to care for oneself is reflected in the "Activities of Daily Living (ADL)," which serve as a measure of functional ability (functioning). A lack of functioning may lead to poor living conditions requiring personal care and assistance. To accurately identify those in need of support, assistance programs continuously evaluate participants' functioning across various domains. However, the assessment process may encounter consistency issues when multiple assessors with varying levels of expertise are involved. Novice assessors, in particular, may lack the necessary preparation for real-world interactions with participants. To address this issue, we developed a dialogue system that simulates interactions between assessors and individuals of varying functioning in a natural and reproducible way. The dialogue system consists of two major modules, one for natural language understanding (NLU) and one for natural language generation (NLG), respectively. In order to generate responses consistent with the underlying knowledge base, the dialogue system requires both an understanding of the user's query and of biographical details of an individual being simulated. To fulfill this requirement, we experimented with query classification and generated responses based on those biographical details using some recently released InstructGPT-like models.