Abstract:Unsupervised domain adaptation (UDA) aims to leverage the knowledge learned from labeled source domains to improve performance on the unlabeled target domains. While Convolutional Neural Networks (CNNs) have been dominant in previous UDA methods, recent research has shown promise in applying Vision Transformers (ViTs) to this task. In this study, we propose a novel Feature Fusion Transferability Aware Transformer (FFTAT) to enhance ViT performance in UDA tasks. Our method introduces two key innovations: First, we introduce a patch discriminator to evaluate the transferability of patches, generating a transferability matrix. We integrate this matrix into self-attention, directing the model to focus on transferable patches. Second, we propose a feature fusion technique to fuse embeddings in the latent space, enabling each embedding to incorporate information from all others, thereby improving generalization. These two components work in synergy to enhance feature representation learning. Extensive experiments on widely used benchmarks demonstrate that our method significantly improves UDA performance, achieving state-of-the-art (SOTA) results.
Abstract:In knowledge distillation, a primary focus has been on transforming and balancing multiple distillation components. In this work, we emphasize the importance of thoroughly examining each distillation component, as we observe that not all elements are equally crucial. From this perspective,we decouple the Kullback-Leibler (KL) divergence into three unique elements: Binary Classification Divergence (BCD), Strong Correlation Divergence (SCD), and Weak Correlation Divergence (WCD). Each of these elements presents varying degrees of influence. Leveraging these insights, we present the Correlation-Aware Knowledge Distillation (CAKD) framework. CAKD is designed to prioritize the facets of the distillation components that have the most substantial influence on predictions, thereby optimizing knowledge transfer from teacher to student models. Our experiments demonstrate that adjusting the effect of each element enhances the effectiveness of knowledge transformation. Furthermore, evidence shows that our novel CAKD framework consistently outperforms the baseline across diverse models and datasets. Our work further highlights the importance and effectiveness of closely examining the impact of different parts of distillation process.
Abstract:With the rapid development of deep learning, object detection and tracking play a vital role in today's society. Being able to identify and track all the pedestrians in the dense crowd scene with computer vision approaches is a typical challenge in this field, also known as the Multiple Object Tracking (MOT) challenge. Modern trackers are required to operate on more and more complicated scenes. According to the MOT20 challenge result, the pedestrian is 4 times denser than the MOT17 challenge. Hence, improving the ability to detect and track in extremely crowded scenes is the aim of this work. In light of the occlusion issue with the human body, the heads are usually easier to identify. In this work, we have designed a joint head and body detector in an anchor-free style to boost the detection recall and precision performance of pedestrians in both small and medium sizes. Innovatively, our model does not require information on the statistical head-body ratio for common pedestrians detection for training. Instead, the proposed model learns the ratio dynamically. To verify the effectiveness of the proposed model, we evaluate the model with extensive experiments on different datasets, including MOT20, Crowdhuman, and HT21 datasets. As a result, our proposed method significantly improves both the recall and precision rate on small & medium sized pedestrians and achieves state-of-the-art results in these challenging datasets.