Abstract:The security guarantee of AI-enabled software systems (particularly using deep learning techniques as a functional core) is pivotal against the adversarial attacks exploiting software vulnerabilities. However, little attention has been paid to a systematic investigation of vulnerabilities in such systems. A common situation learned from the open source software community is that deep learning engineers frequently integrate off-the-shelf or open-source learning frameworks into their ecosystems. In this work, we specifically look into deep learning (DL) framework and perform the first systematic study of vulnerabilities in DL systems through a comprehensive analysis of identified vulnerabilities from Common Vulnerabilities and Exposures (CVE) and open-source DL tools, including TensorFlow, Caffe, OpenCV, Keras, and PyTorch. We propose a two-stream data analysis framework to explore vulnerability patterns from various databases. We investigate the unique DL frameworks and libraries development ecosystems that appear to be decentralized and fragmented. By revisiting the Common Weakness Enumeration (CWE) List, which provides the traditional software vulnerability related practices, we observed that it is more challenging to detect and fix the vulnerabilities throughout the DL systems lifecycle. Moreover, we conducted a large-scale empirical study of 3,049 DL vulnerabilities to better understand the patterns of vulnerability and the challenges in fixing them. We have released the full replication package at https://github.com/codelzz/Vulnerabilities4DLSystem. We anticipate that our study can advance the development of secure DL systems.
Abstract:With the rapid development of deep learning, object detection and tracking play a vital role in today's society. Being able to identify and track all the pedestrians in the dense crowd scene with computer vision approaches is a typical challenge in this field, also known as the Multiple Object Tracking (MOT) challenge. Modern trackers are required to operate on more and more complicated scenes. According to the MOT20 challenge result, the pedestrian is 4 times denser than the MOT17 challenge. Hence, improving the ability to detect and track in extremely crowded scenes is the aim of this work. In light of the occlusion issue with the human body, the heads are usually easier to identify. In this work, we have designed a joint head and body detector in an anchor-free style to boost the detection recall and precision performance of pedestrians in both small and medium sizes. Innovatively, our model does not require information on the statistical head-body ratio for common pedestrians detection for training. Instead, the proposed model learns the ratio dynamically. To verify the effectiveness of the proposed model, we evaluate the model with extensive experiments on different datasets, including MOT20, Crowdhuman, and HT21 datasets. As a result, our proposed method significantly improves both the recall and precision rate on small & medium sized pedestrians and achieves state-of-the-art results in these challenging datasets.