Abstract:There are many deep learning (DL) powered mobile and wearable applications today continuously and unobtrusively sensing the ambient surroundings to enhance all aspects of human lives.To enable robust and private mobile sensing, DL models are often deployed locally on resource-constrained mobile devices using techniques such as model compression or offloading.However, existing methods, either front-end algorithm level (i.e. DL model compression/partitioning) or back-end scheduling level (i.e. operator/resource scheduling), cannot be locally online because they require offline retraining to ensure accuracy or rely on manually pre-defined strategies, struggle with dynamic adaptability.The primary challenge lies in feeding back runtime performance from the back-end level to the front-end level optimization decision. Moreover, the adaptive mobile DL model porting middleware with cross-level co-adaptation is less explored, particularly in mobile environments with diversity and dynamics. In response, we introduce CrowdHMTware, a dynamic context-adaptive DL model deployment middleware for heterogeneous mobile devices. It establishes an automated adaptation loop between cross-level functional components, i.e. elastic inference, scalable offloading, and model-adaptive engine, enhancing scalability and adaptability. Experiments with four typical tasks across 15 platforms and a real-world case study demonstrate that CrowdHMTware can effectively scale DL model, offloading, and engine actions across diverse platforms and tasks. It hides run-time system issues from developers, reducing the required developer expertise.
Abstract:Deep learning is reshaping mobile applications, with a growing trend of deploying deep neural networks (DNNs) directly to mobile and embedded devices to address real-time performance and privacy. To accommodate local resource limitations, techniques like weight compression, convolution decomposition, and specialized layer architectures have been developed. However, the \textit{dynamic} and \textit{diverse} deployment contexts of mobile devices pose significant challenges. Adapting deep models to meet varied device-specific requirements for latency, accuracy, memory, and energy is labor-intensive. Additionally, changing processor states, fluctuating memory availability, and competing processes frequently necessitate model re-compression to preserve user experience. To address these issues, we introduce AdaScale, an elastic inference framework that automates the adaptation of deep models to dynamic contexts. AdaScale leverages a self-evolutionary model to streamline network creation, employs diverse compression operator combinations to reduce the search space and improve outcomes, and integrates a resource availability awareness block and performance profilers to establish an automated adaptation loop. Our experiments demonstrate that AdaScale significantly enhances accuracy by 5.09%, reduces training overhead by 66.89%, speeds up inference latency by 1.51 to 6.2 times, and lowers energy costs by 4.69 times.