Abstract:Recently, the problem of music plagiarism has emerged as an even more pressing social issue. As music information retrieval research advances, there is a growing effort to address issues related to music plagiarism. However, many studies, including our previous work, have conducted research without clearly defining what the music plagiarism detection task actually involves. This lack of a clear definition has slowed research progress and made it hard to apply results to real-world scenarios. To fix this situation, we defined how Music Plagiarism Detection is different from other MIR tasks and explained what problems need to be solved. We introduce the Similar Music Pair dataset to support this newly defined task. In addition, we propose a method based on segment transcription as one way to solve the task. Our demo and dataset are available at https://github.com/Mippia/ICASSP2026-MPD.
Abstract:Social media data has been of interest to Natural Language Processing (NLP) practitioners for over a decade, because of its richness in information, but also challenges for automatic processing. Since language use is more informal, spontaneous, and adheres to many different sociolects, the performance of NLP models often deteriorates. One solution to this problem is to transform data to a standard variant before processing it, which is also called lexical normalization. There has been a wide variety of benchmarks and models proposed for this task. The MultiLexNorm benchmark proposed to unify these efforts, but it consists almost solely of languages from the Indo-European language family in the Latin script. Hence, we propose an extension to MultiLexNorm, which covers 5 Asian languages from different language families in 4 different scripts. We show that the previous state-of-the-art model performs worse on the new languages and propose a new architecture based on Large Language Models (LLMs), which shows more robust performance. Finally, we analyze remaining errors, revealing future directions for this task.
Abstract:With the rise of generative AI technology, anyone can now easily create and deploy AI-generated music, which has heightened the need for technical solutions to address copyright and ownership issues. While existing works mainly focused on short-audio, the challenge of full-audio detection, which requires modeling long-term structure and context, remains insufficiently explored. To address this, we propose an improved version of the Segment Transformer, termed the Fusion Segment Transformer. As in our previous work, we extract content embeddings from short music segments using diverse feature extractors. Furthermore, we enhance the architecture for full-audio AI-generated music detection by introducing a Gated Fusion Layer that effectively integrates content and structural information, enabling the capture of long-term context. Experiments on the SONICS and AIME datasets show that our approach outperforms the previous model and recent baselines, achieving state-of-the-art results in AI-generated music detection.
Abstract:Audio and music generation systems have been remarkably developed in the music information retrieval (MIR) research field. The advancement of these technologies raises copyright concerns, as ownership and authorship of AI-generated music (AIGM) remain unclear. Also, it can be difficult to determine whether a piece was generated by AI or composed by humans clearly. To address these challenges, we aim to improve the accuracy of AIGM detection by analyzing the structural patterns of music segments. Specifically, to extract musical features from short audio clips, we integrated various pre-trained models, including self-supervised learning (SSL) models or an audio effect encoder, each within our suggested transformer-based framework. Furthermore, for long audio, we developed a segment transformer that divides music into segments and learns inter-segment relationships. We used the FakeMusicCaps and SONICS datasets, achieving high accuracy in both the short-audio and full-audio detection experiments. These findings suggest that integrating segment-level musical features into long-range temporal analysis can effectively enhance both the performance and robustness of AIGM detection systems.
Abstract:As Large Language Models (LLMs) are increasingly deployed in sensitive domains such as enterprise and government, ensuring that they adhere to user-defined security policies within context is critical-especially with respect to information non-disclosure. While prior LLM studies have focused on general safety and socially sensitive data, large-scale benchmarks for contextual security preservation against attacks remain lacking. To address this, we introduce a novel large-scale benchmark dataset, CoPriva, evaluating LLM adherence to contextual non-disclosure policies in question answering. Derived from realistic contexts, our dataset includes explicit policies and queries designed as direct and challenging indirect attacks seeking prohibited information. We evaluate 10 LLMs on our benchmark and reveal a significant vulnerability: many models violate user-defined policies and leak sensitive information. This failure is particularly severe against indirect attacks, highlighting a critical gap in current LLM safety alignment for sensitive applications. Our analysis reveals that while models can often identify the correct answer to a query, they struggle to incorporate policy constraints during generation. In contrast, they exhibit a partial ability to revise outputs when explicitly prompted. Our findings underscore the urgent need for more robust methods to guarantee contextual security.
Abstract:Hate speech detection is a crucial area of research in natural language processing, essential for ensuring online community safety. However, detecting implicit hate speech, where harmful intent is conveyed in subtle or indirect ways, remains a major challenge. Unlike explicit hate speech, implicit expressions often depend on context, cultural subtleties, and hidden biases, making them more challenging to identify consistently. Additionally, the interpretation of such speech is influenced by external knowledge and demographic biases, resulting in varied detection results across different language models. Furthermore, Large Language Models often show heightened sensitivity to toxic language and references to vulnerable groups, which can lead to misclassifications. This over-sensitivity results in false positives (incorrectly identifying harmless statements as hateful) and false negatives (failing to detect genuinely harmful content). Addressing these issues requires methods that not only improve detection precision but also reduce model biases and enhance robustness. To address these challenges, we propose a novel method, which utilizes in-context learning without requiring model fine-tuning. By adaptively retrieving demonstrations that focus on similar groups or those with the highest similarity scores, our approach enhances contextual comprehension. Experimental results show that our method outperforms current state-of-the-art techniques. Implementation details and code are available at TBD.
Abstract:Large Language Models (LLMs) play a vital role in applications like conversational agents and content creation, where controlling a model's personality is crucial for maintaining tone, consistency, and engagement. However, traditional prompt-based techniques for controlling personality often fall short, as they do not effectively mitigate the model's inherent biases. In this paper, we introduce a novel method PALETTE that enhances personality control through knowledge editing. By generating adjustment queries inspired by psychological assessments, our approach systematically adjusts responses to personality-related queries similar to modifying factual knowledge, thereby achieving controlled shifts in personality traits. Experimental results from both automatic and human evaluations demonstrate that our method enables more stable and well-balanced personality control in LLMs.
Abstract:3D point clouds are increasingly vital for applications like autonomous driving and robotics, yet the raw data captured by sensors often suffer from noise and sparsity, creating challenges for downstream tasks. Consequently, point cloud upsampling becomes essential for improving density and uniformity, with recent approaches showing promise by projecting randomly generated query points onto the underlying surface of sparse point clouds. However, these methods often result in outliers, non-uniformity, and difficulties in handling regions with high curvature and intricate structures. In this work, we address these challenges by introducing the Progressive Local Surface Estimator (PLSE), which more effectively captures local features in complex regions through a curvature-based sampling technique that selectively targets high-curvature areas. Additionally, we incorporate a curriculum learning strategy that leverages the curvature distribution within the point cloud to naturally assess the sample difficulty, enabling curriculum learning on point cloud data for the first time. The experimental results demonstrate that our approach significantly outperforms existing methods, achieving high-quality, dense point clouds with superior accuracy and detail.




Abstract:Reducing scan time in Positron Emission Tomography (PET) imaging while maintaining high-quality images is crucial for minimizing patient discomfort and radiation exposure. Due to the limited size of datasets and distribution discrepancy across scanners in medical imaging, fine-tuning in a parameter-efficient and effective manner is on the rise. Motivated by the potential of Parameter-Efficient Fine-Tuning (PEFT), we aim to address these issues by effectively leveraging PEFT to improve limited data and GPU resource issues in multi-scanner setups. In this paper, we introduce PETITE, Parameter-Efficient Fine-Tuning for MultI-scanner PET to PET REconstruction that uses fewer than 1% of the parameters. To the best of our knowledge, this study is the first to systematically explore the efficacy of diverse PEFT techniques in medical imaging reconstruction tasks via prevalent encoder-decoder-type deep models. This investigation, in particular, brings intriguing insights into PETITE as we show further improvements by treating encoder and decoder separately and mixing different PEFT methods, namely, Mix-PEFT. Using multi-scanner PET datasets comprised of five different scanners, we extensively test the cross-scanner PET scan time reduction performances (i.e., a model pre-trained on one scanner is fine-tuned on a different scanner) of 21 feasible Mix-PEFT combinations to derive optimal PETITE. We show that training with less than 1% parameters using PETITE performs on par with full fine-tuning (i.e., 100% parameter)
Abstract:Sarcasm is a way of verbal irony where someone says the opposite of what they mean, often to ridicule a person, situation, or idea. It is often difficult to detect sarcasm in the dialogue since detecting sarcasm should reflect the context (i.e., dialogue history). In this paper, we introduce a new dataset for the Korean dialogue sarcasm detection task, KoCoSa (Korean Context-aware Sarcasm Detection Dataset), which consists of 12.8K daily Korean dialogues and the labels for this task on the last response. To build the dataset, we propose an efficient sarcasm detection dataset generation pipeline: 1) generating new sarcastic dialogues from source dialogues with large language models, 2) automatic and manual filtering of abnormal and toxic dialogues, and 3) human annotation for the sarcasm detection task. We also provide a simple but effective baseline for the Korean sarcasm detection task trained on our dataset. Experimental results on the dataset show that our baseline system outperforms strong baselines like large language models, such as GPT-3.5, in the Korean sarcasm detection task. We show that the sarcasm detection task relies deeply on the existence of sufficient context. We will release the dataset at https://anonymous.4open.science/r/KoCoSa-2372.